Skip to Content
MilliporeSigma

931950

Sigma-Aldrich

Sodium perchlorate

≥99.9% trace metals basis

Synonym(s):

Sodium Perchlorate, Hyperchloric acid sodium salt

Sign Into View Organizational & Contract Pricing

Select a Size


About This Item

Empirical Formula (Hill Notation):
ClNaO4
CAS Number:
Molecular Weight:
122.44
MDL number:
UNSPSC Code:
12352302
NACRES:
NA.23
Assay:
≥99.9% trace metals basis
Grade:
anhydrous
Form:
powder
Solubility:
H2O: 209 g/dL at 15 °C
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

grade

anhydrous

Quality Level

assay

≥99.9% trace metals basis

form

powder

reaction suitability

core: sodium

impurities

≤1000 ppm (trace metals analysis)

pH

6.0-8.0 (25 °C, 5%, aq.sol.)

mp

482 °C

solubility

H2O: 209 g/dL at 15 °C

anion traces

chloride (Cl-): ≤30 ppm
sulfate (SO42-): ≤20 ppm

cation traces

Fe: ≤5 ppm
K: ≤500 ppm

SMILES string

[Na+].[Cl](=O)(=O)(=O)[O-]

InChI

1S/ClHO4.Na/c2-1(3,4)5;/h(H,2,3,4,5);/q;+1/p-1

InChI key

BAZAXWOYCMUHIX-UHFFFAOYSA-M

Looking for similar products? Visit Product Comparison Guide

General description

Anhydrous sodium perchlorate is a white crystalline solid. It is hygroscopic and absorbs water to form its monohydrate. Anhydrous sodium perchlorate is highly soluble in water, and soluble in a range of polar organic solvents such as methanol, ethanol, acetone, carbonates (including ethylene carbonate, dimethyl carbonate, propylene carbonate, and diethyl carbonate), and ethers (including dimethoxyethane, tetrahydrofuran, and triethylene glycol dimethyl ether). It is insoluble in benzene, chloroform, and toluene.

Application

The major application of anhydrous sodium perchlorate is as an electrolyte in sodium-ion batteries. It is popular because of its solubility in ethers and carbonates, its wide electrochemical stability window (e.g. from 0 to 5 V vs Na+/Na in propylene carbonate, triglyme, or diethylcarbonate)[1], and its compatibility with a wide range of materials. It has been used in batteries with hard-carbon anodes[2], mesoporous carbon anodes[3], sodium cobalt oxide cathodes (NaxCoO2)[4], sodium vanadium oxide cathodes (NaxVO2)[5], titanium dioxide cathodes[6], and emerging materials like high-entropy layered oxide cathodes[7].

Packaging

10 g in glass bottle
25 g in glass bottle

signalword

Danger

Hazard Classifications

Acute Tox. 4 Oral - Eye Irrit. 2 - Ox. Sol. 1 - STOT RE 2

target_organs

Thyroid

Storage Class

5.1A - Strongly oxidizing hazardous materials

wgk_germany

WGK 1


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

It looks like we've run into a problem, but you can still download Certificates of Analysis from our Documents section.

If you need assistance, please contact Customer Support

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries.
Komaba, S., et al.
Advances in Functional Materials, 21, 3859-3867 (2011)

Articles

Discover the role of electrolytes in sodium-ion batteries, to enhance performance, safety, and sustainability in energy storage solutions.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service