SML3363
GNE-317
≥98% (HPLC)
동의어(들):
5-(6-(3-Methoxyoxetan-3-yl)-4-morpholinothieno[3,2-d]pyrimidin-2-yl)pyrimidin-2-amine, 5-(6-(3-Methoxyoxetan-3-yl)-7-methyl-4-morpholinothieno[3,2-d]pyrimidin-2-yl)pyrimidin-2-amine, 5-[6-(3-Methoxy-3-oxetanyl)-7-methyl-4-(4-morpholinyl)thieno[3,2-d]pyrimidin-2-yl]-2-pyrimidinamine, GNE 317, GNE317
로그인조직 및 계약 가격 보기
크기 선택
제품정보 (DICE 배송 시 비용 별도)
실험식(Hill 표기법):
C19H22N6O3S
CAS 번호:
Molecular Weight:
414.48
MDL number:
UNSPSC 코드:
12352200
NACRES:
NA.77
Quality Level
분석
≥98% (HPLC)
양식
powder
색상
white to beige
solubility
DMSO: 2 mg/mL, clear
저장 온도
−20°C
SMILES string
NC1=NC=C(C2=NC3=C(C(N4CCOCC4)=N2)SC(C5(COC5)OC)=C3C)C=N1
InChI
1S/C19H22N6O3S/c1-11-13-14(29-15(11)19(26-2)9-28-10-19)17(25-3-5-27-6-4-25)24-16(23-13)12-7-21-18(20)22-8-12/h7-8H,3-6,9-10H2,1-2H3,(H2,20,21,22)
InChI key
XOZLHJMDLKDZAL-UHFFFAOYSA-N
생화학적/생리학적 작용
GNE-317 is an orally active potent inhibitor against phosphoinositide 3-kinase (PI3K Ki = 2/α, 27/β, 7/δ, 7/γ) and mTOR (Ki = 9 nM). GNE-317 exhibits antiproliferation potency in glioblastoma cancer cultures (EC50 from 140 to 570 nM in seven cultures) and anti-tumor efficacy in mice in vivo (40 mg/kg/d for 2 wks, then 30 mg/kg/d after; U87, GS2, and GBM10 orthotopic models).
Orally active, potent phosphoinositide 3-kinase (PI3K) and mTOR inhibitor with anti-glioblastoma efficacy in cultures in mice in vivo.
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point (°F)
Not applicable
Flash Point (°C)
Not applicable
Timothy P Heffron et al.
Journal of medicinal chemistry, 55(18), 8007-8020 (2012-09-06)
Inhibition of phosphoinositide 3-kinase (PI3K) signaling through PI3Kα has received significant attention for its potential in cancer therapy. While the PI3K pathway is a well-established and widely pursued target for the treatment of many cancer types due to the high
Ravi S Narayan et al.
Nature communications, 11(1), 2935-2935 (2020-06-12)
Personalized cancer treatments using combinations of drugs with a synergistic effect is attractive but proves to be highly challenging. Here we present an approach to uncover the efficacy of drug combinations based on the analysis of mono-drug effects. For this
Laurent Salphati et al.
Drug metabolism and disposition: the biological fate of chemicals, 42(7), 1110-1116 (2014-04-24)
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults, and the limited available treatment options have not meaningfully impacted patient survival in the past decades. Such poor outcomes can be at least partly attributed to the inability
자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..
고객지원팀으로 연락바랍니다.