SCC058
FibroGRO® Xeno-Free Human Foreskin Fibroblasts
The FibroGRO Xeno-Free Human Foreskin Fibroblasts are derived from normal human foreskin & have been isolated & manufactured under xeno-free conditions.
Select a Size
About This Item
biological source
human foreskin (fibroblasts)
Quality Level
packaging
pkg of 1 kit
manufacturer/tradename
Chemicon®
FibroGRO®
Millipore
morphology
(endothelial)
technique(s)
cell culture | mammalian: suitable
cell culture | stem cell: suitable
shipped in
liquid nitrogen
General description
Application
Stem Cell Research
Biochem/physiol Actions
Preparation Note
Analysis Note
Other Notes
Legal Information
Disclaimer
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Articles
The Simplicon™ RNA Reprogramming Technology is a next generation reprogramming system that uses a single synthetic, polycistronic self-replicating RNA strand engineered to mimic cellular RNA to generate human iPS cells.
Fibroblast growth factors (FGFs) regulate developmental pathways and mesoderm/ectoderm patterning in early embryonic development.
Protocols
Stem cell reprogramming protocols to generate human induced pluripotent stem cells (iPSCs) including viral and non-viral RNA based methods.
Related Content
As the focus of stem cell research undergoes a transition from animal to human models, researchers are in critical need of validated products to support the isolation, maintenance, differentiation, and characterization of human stem cells. While many reagents designed for rodent systems can be applied to human stem cell studies, they are not truly optimized for robust human stem cell culture or analysis. This is why human stem cell researchers have always trusted EMD Millipore, the first provider of commercially available human embryonic stem cells and human neural stem cell lines, to accelerate their research. All of our human stem cell systems are extensively tested in defined media culture, and differentiated progeny are comprehensively characterized with highly validated antibodies and detection reagents.
This guide outlines our comprehensive selection of stem cells, media, supplements, growth factors, cultureware, and tools for stem cell characterization. These proven solutions cover a broad spectrum of stem cell and specialty cell culture areas and are backed by our knowledgeable technical support.
Millipore’s new STEMCCA lentivirus reprogramming kits make it easier than ever to generate induced pluripotent stem (iPS) cells. Unlike traditional iPS generation which requires simultaneous co-infection by four separate expression vectors, the STEMCCA kits use a single polycistronic lentiviral vector to improve efficiency and reduce the number of viral integrations. The STEMCCA vector is comprised of the transcription factors Oct-4, Klf4, SOX-2, and c-Myc (OKSM), separated by the self-cleaving 2A peptide and IRES sequences 1,2. It is also available with flanking LoxP sites incorporated for Cre-mediated excision of the exogenous reprogramming transgenes. STEMCCA Vector Advantages: (1) Efficient: uses a single vector with four transcription factors rather than co-transducing four separate expression vectors (2) Minimizes viral integrations: single vector reduces the risks of insertional mutagenesis and viral reactivation and (3) Excisable: Cre/LoxP-regulated version enables removal of reprogramming transgenes.
Dual SMAD inhibition is a well-established method to derive neural progenitor cells from both human ES and iPS cells. This protocol uses two SMAD inhibitors, Noggin and SB431542, to drive the rapid differentiation of ES/iPS cells into a highly enriched population of NPCs. Noggin acts as a BMP inhibitor and SB431542 inhibits the Lefty/Activin/TGFβ pathways by blocking the phosphorylation of ALK4, ALK5, and ALK7 receptors. In an effort to make a more defined and optimized neuronal differentiation protocol, Li and colleagues modified the original protocol to establish a completely small molecule-based differentiation method, which relies on three small molecules to inhibit GSK-3β (CHIR99021), TGFβ (SB431542), and Notch (compound E) signaling pathways, along with human LIF3. This new small molecule-based neural differentiation protocol increased neural differentiation kinetics and allowed the derivation of truly multipotent neural stem cells that respond to regional patterning cues specifying forebrain, midbrain, and hindbrain neural and glial subtypes.
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service