Skip to Content
Merck

449903

Sigma-Aldrich

Lithium fluoride

greener alternative

≥99.99% trace metals basis

Synonym(s):

Fluorolithium

Sign Into View Organizational & Contract Pricing

Select a Size


About This Item

Linear Formula:
LiF
CAS Number:
Molecular Weight:
25.94
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23
Assay:
≥99.99% trace metals basis
Form:
powder and chunks
Solubility:
aqueous acid: slightly soluble(lit.)
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Quality Level

Assay

≥99.99% trace metals basis

form

powder and chunks

reaction suitability

core: lithium

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

impurities

≤100.0 ppm Trace Metal Analysis

bp

1673 °C/1 atm (lit.)

mp

845 °C (lit.)

solubility

aqueous acid: slightly soluble(lit.)

density

2.64 g/mL at 25 °C (lit.)

application(s)

battery precursors
catalysts
material synthesis precursor

greener alternative category

SMILES string

[Li+].[F-]

InChI

1S/FH.Li/h1H;/q;+1/p-1

InChI key

PQXKHYXIUOZZFA-UHFFFAOYSA-M

Looking for similar products? Visit Product Comparison Guide

General description

Lithium fluoride is a white crystalline solid with a high melting point. It is widely applied in the field of rechargeable batteries, storage devices, and thermoluminescent materials. LiF is also used as a coupling layer in OLED or PLED devices to enhance electron injection. On the other hand, it is preferred for optical applications due to its wide band gap, which allows it to transmit light efficiently.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Click here for more information.

Application

Lithium fluoride can be used:
  • As an additive to fabricate SiO@C/graphite composite anode materials for Li-ion batteries. LiF stabilizes solid electrolyte interphase (SEI) and enhances initial coulombic efficiency.
  • As a critical component in SEI for stabilizing the SEI layer and improving the cycling efficiency of Li metal batteries.
  • To fabricate electron contacts for high-efficiency n-type crystalline silicon solar cells.
  • To prepare solid-state light sources for radiation imaging detectors.
  • To synthesize highly crystalline MXene for asymmetric supercapacitor applications. And also, lightweight, flexible, and hydrophobic MXene foam with reasonable strength, high electrical conductivity, and an outstanding EMI-shielding performance.
  • As an electron-injection layer to fabricate ITO/PEDOT:PSS/perovskite/B3PYMPM/ LiF/Al OLED device with a quantum efficiency of 20%.

Features and Benefits

  • High purity in lithium fluoride is vital for the best performance and lifespan of lithium-ion batteries, helping to reduce degradation from metal impurities.
  • The presence of metal impurities such as calcium, sodium, and iron at levels below 10 ppm helps maintain optimal battery performance .
  • High purity lithium fluoride enhances electrochemical efficiency by ensuring optimal ionic conductivity, minimizes side reactions that degrade battery materials, contributes to stable electrolyte formulations for improved longevity and cycle life, and reduces the risk of hazardous reactions during battery operation, thereby enhancing safety and reliability.
  • Low moisture content (114ppm) improves the performance of LiF in high-temperature or high-humidity environments, making it suitable for a wider range of applications.
  • High purity lithium fluoride enhances charge transport for increased solar cell efficiency, maintains material stability for long-term performance, reduces structural defects to improve light absorption, and boosts durability for extended operational life.

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Acute Tox. 4 Oral - Eye Irrit. 2

Supplementary Hazards

Storage Class Code

6.1D - Non-combustible acute toxic Cat.3 / toxic hazardous materials or hazardous materials causing chronic effects

WGK

WGK 2

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Radiat. Prot. Dosim., 66, 423-423 (1996)
Radiat. Prot. Dosim., 66, 101-101 (1996)
Zeinab Safari et al.
Nanomaterials (Basel, Switzerland), 9(11) (2019-11-21)
The performances of organometallic halide perovskite-based solar cells severely depend on the device architecture and the interface between each layer included in the device stack. In particular, the interface between the charge transporting layer and the perovskite film is crucial
Eur. J. Solid State Inorg. Chem., 33, 809-809 (1996)
R Takam et al.
Radiation protection dosimetry, 150(1), 22-33 (2011-08-30)
(6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P glass-rod thermoluminescent dosemeters (TLDs) were used for measurements of out-of-field photon and neutron doses produced by Varian iX linear accelerator. Both TLDs were calibrated using 18-MV X-ray beam to investigate their dose-response sensitivity and linearity. CR-39 etch-track

Articles

Solid-state lithium fast-ion conductors are crucial for safer, high-energy-density all-solid-state batteries, addressing conventional battery limitations.

Professor Gogotsi and Dr. Shuck introduce MXenes: a promising family of two-dimensional materials with a unique combination of high conductivity, hydrophilicity, and extensive tunability.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service