3dGRO™ Organoid Freeze Medium

Stem Cell Media
Cat. # SCM301

FOR RESEARCH USE ONLY.
NOT FOR USE IN DIAGNOSTIC PROCEDURES.
NOT FOR HUMAN OR ANIMAL CONSUMPTION.

pack size: 50 ml

Store at -20°C

Data Sheet

page 1 of 2

Background

Organoids are *in-vitro* derived 3D cell aggregates derived from primary tissue or stem cells that are capable of self-renewal, self-organization and exhibit organ functionality. Organoids address the limitations of existing 2D model systems by providing:

- Similar composition and architecture to primary tissue:
 Organoids harbor small population of self-renewing stem cells
 (such as intestinal crypt stem cells) that can differentiate into
 cells of all major cell lineages, with similar frequency as in
 physiological condition.
- Relevant models of in-vivo conditions: Organoids are more biologically relevant to any model system and are amenable to manipulate niche components and gene sequence.
- Stable system for extended cultivation: Organoids can be cryopreserved as biobanks and expanded indefinitely by leveraging self-renewal, differentiation capability of stem cell and intrinsic ability to self-organize.

Organoids can be cryopreserved using standard cell freezing techniques however freeze/thaw viability remains a challenge. The 3dGRO™ Organoid Freeze Medium is a proprietary optimized cryopreservation media for multiple organoids cell types. The media supports higher freeze/thaw viabilities compared to other commercial or homemade organoid freezing media formulations.

Storage

Aliquot and store the 3dGRO™ Organoid Freeze Medium at -20°C. Thaw at room temperature or 2-8°C overnight. Avoid mutiple freeze thaw cycles

Quality Control

Appearance (color): Amber Osmolality: 250-350 mOsm

pH: 6.8-7.1

Sterility Tested: No Growth/Pass Bacterial & Fungal Tested: Passed

Cryopreservation Protocol

Freeze ≥ 200 organoids per cryovial when organoids are mature and look like they are ready to be passaged. The following protocol is based on freezing one cryovial.

- Prepare all media and reagents required before the experiment. Thaw 3dGRO™ Organoid Freeze Medium on ice.
- Count the number of organoids that are present in a dome. Combine multiple wells if one dome contains less than 200 organoids.
- Aspirate the culture medium. Add 1 mL PBS to each well.
 Using a p1000 pipet, pipet up and down 10 times to break up the organoid dome into smaller pieces. Transfer the dissociated organoid mixture, combining domes if necessary, to a 50 mL conical tube.
- Rinse the wells with 0.5 mL PBS and combine the supernatant to the conical tube. Centrifuge at 500-650x g for five minutes at 4°C,
- Carefully aspirate the supernatant and leave around 100 μL
 medium behind. Note: Do not aspirate all the way down to
 the pellet as you may inadvertently aspirate the smaller
 organoids.
- Add 10 mL DMEM/F-12 or DMEM medium to wash the pellet. Gently pipette up and down once. Centrifuge the suspension at 650 - 700x g for five minutes at 4°C.
- 7. Carefully aspirate the supernatant and leave around 50-100 $\,\mu L$ medium behind. Using a 20 uL pipette tip, carefully remove the remaining medium.
- Resuspend the organoid pellet in a suitable amount of icecold (2 - 8°C) 3dGRO™ Organoid Freeze Medium. Avoid over-pipetting. Do not dissociate the pellet to single cells.
 Note: Each cryovial should contain at least 200 organoids.
- Aliquot 1 mL into labeled cryovials. Place the cryovial(s) in a Mr. Frosty container with isopropyl alcohol.
- 10. Transfer the freezing container to a -80°C freezer; 24hrs later, transfer the cryovial to liquid nitrogen (-135°C) for long term storage. Long-term storage at -80°C is not recommended.

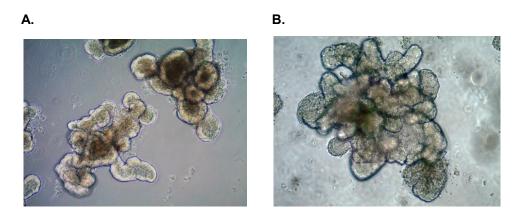
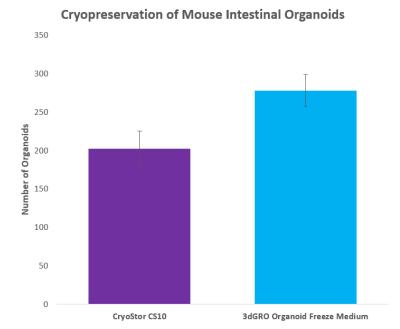



Figure 1. The 3dGRO™ Organoid Freeze Medium supports high freeze/thaw cell viabilities of multiple cell types including mouse intestinal organoids (A) and human iPSC derived colon organoids (B). Images represent day 10 post freeze/thaw in optimized organoid expansion media.

Figure 2. Mouse intestinal organoids cryopreserved in 3dGRO™ Organoid Freeze Medium produce a higher number of viable organoids post freeze/thaw vs. CryoStor CS10.

Related Products

Product Description	Catalog Number
3dGRO™ Human iPSC Derived Colon Organoids	SCC300
3dGRO™ Human Colon Organoid Expansion Medium	SCM304
3dGRO™ R-Spondin-1 Conditioned Media Supplement, 10 mL	SCM104
3dGRO™ Organoid Freeze Medium	SCM301
Definitive Endoderm Induction Medium	SCM302
Hindgut Endoderm Induction Medium	SCM303
DMEM/F-12 PLUS Basal Medium, 500 ml	SCM162

3dGRO™ is a trademark of Merck KGaA, Darmstadt, Germany

antibodies Multiplex products biotools cell culture enzymes kits proteins/peptides siRNA/cDNA products

