

Product Information

Chloroquine diphosphate salt

C6628

Store at room temperature.

Product Description

Molecular Formula: C₁₈H₂₆ClN₃ • 2H₃PO₄

Molecular Weight: 515.9 CAS Number: 50-63-5 Melting point: 192-198 °C

Extinction coefficient: $E^{mM} = 15 (257 \text{ nm}),$ 16.6 (329 nm), 18.9 (343 nm) (0.01 M HCl)¹

pK_a: 8.4 and 10.8 (for chloroquine base at 20 °C)²

This product is a member of the quinoline family with multiple applications. It was originally used as an antimalarial compound.³ It kills the erythrocytic forms of malaria parasites at all stages of development, but does not affect the sporozoites.

This compound is also an antibiotic.^{4,5} It can be used at 200 mg/mL (PBS, pH 5.0) to dissociate antigen antibody complexes without denaturing red blood cell antigens.⁶

A more recent usage is for DNA transfection. 7,8 When used at 100 μ M, it intercalates into DNA, increasing transfection efficiency. 9

Precautions and Disclaimer

For laboratory use only. Not for drug, household or other uses.

Preparation Instructions

This product is soluble in water (50 mg/mL). A 10% solution in water has a pH of 3.5-4.5. A 7.15% solution in water is iso-osmotic with serum. It is practically insoluble in alcohol, chloroform or ether.³

Storage/Stability

Solutions can be sterilized by autoclaving or by filtration through a 0.2 μm membrane. Solutions of pH 4-6 are stable when heated but are sensitive to light.³

References

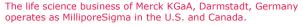
- 1. British Pharmacopoeia, H.M.S.O. (London, GB: 1980), p. 103.
- 2. Clarke's Isolation and Identification of Drugs, Moffat, A. C., et al., eds, The Pharmaceutical Press (London, GB: 1986), p. 453.
- 3. Martindale The Extra Pharmacopoeia, 29th ed., Reynolds, J. E. F., ed., The Pharmaceutical Press (London, England: 1989), p. 508.
- 4. The Merck Index, 11th ed., Entry# 2163.
- 5. Anal. Prof. Drug Sub., 5, 61 (1976).
- Edwards, J. M., et al., Chloroquine Dissociation of Antigen-antibody Complexes. A New Technique for Typing Red Blood Cells with a Positive Direct Antiglobulin Test. Transfusion, 22(1), 59-61 (1982).
- 7. Krajewski, W.A., Effect of In Vivo Histone Hyperacetylation on the State of Chromatin FibersJ. Biomol. Struct. Dyn., **16(5)**, 1097-1106 (1999).
- Luthman, H., and Magnusson, G., High Efficiency Polyoma DNA Transfection of Chloroquine Treated Cells Nucleic Acids Res., 11(5), 1295-1308 (1983).
- Boros, P., et al., IgM anti-Fc Gamma R Autoantibodies Trigger Neutrophil Degranulation.
 J. Exp. Med., 173(6), 1473-1482 (1991).

Notice

We provide information and advice to our customers on application technologies and regulatory matters to the best of our knowledge and ability, but without obligation or liability. Existing laws and regulations are to be observed in all cases by our customers. This also applies in respect to any rights of third parties. Our information and advice do not relieve our customers of their own responsibility for checking the suitability of our products for the envisaged purpose.

The information in this document is subject to change without notice and should not be construed as a commitment by the manufacturing or selling entity, or an affiliate. We assume no responsibility for any errors that may appear in this document.

Technical Assistance


Visit the tech service page at SigmaAldrich.com/techservice.

Terms and Conditions of Sale

Warranty, use restrictions, and other conditions of sale may be found at <u>SigmaAldrich.com/terms</u>.

Contact Information

For the location of the office nearest you, go to SigmaAldrich.com/offices.

