

3050 Spruce Street, St. Louis, MO 63103 USA
Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757
email: techservice@sial.com sigma-aldrich.com

Product Information

NF-κB (p65) Control Peptide human

Catalog Number **N6659** Storage Temperature –20 °C

Product Description

Organisms must be able to respond rapidly and effectively to changes in their environment. Most types of signaling molecules induce cellular responses by binding to specific cell-surface receptors. These receptors respond to occupancy by undergoing structural or biochemical changes that can be transmitted to the interior of the cell. One of the most common responses to receptor ligation is the synthesis of new proteins through alteration of the pattern of gene expression. Consequently, the relatively few transcription factors that regulate inducible gene expression can be the targets for many distinct signal transduction pathways, triggered by a wide variety of stimuli.²

One important transcription factor that plays a pivotal role in many cellular responses to environmental changes is NF-κB, a heterodimeric transcription factor composed of p50 (50 kDa) and p65 (65 kDa) subunits. NF-κB can be activated in many cell types and is thought to regulate a wide variety of genes. 3-5 An extensive set of genes with putative NF-κB-binding sites has been identified, and in many of these, the NF-κB sites appear crucial to the regulation of transcription. A wide range of stimuli lead to translocation of NF-κB from the cytoplasm to the nucleus, where it appears in an active form capable of binding decameric κB sequences motifs. 6 Putative cellular target genes are largely involved in the acutephase response, inflammation, lymphocyte activation (specific and nonspecific immune responses), and cell growth and differentiation. These genes include cellsurface molecules involved in immune function such as immunoglobulin κ light chain, class I and II major histocompatability complex (MHC), and cytokines such as interleukin-1β (IL-1β), IL-2, IL-6, interferon-β (IFNβ), and tumor necrosis factor α (TNF α).

Under normal conditions, NF- κ B is bound to an inhibitor protein, I- κ B, that sequesters NF- κ B in the cytosol. Activation of NF- κ B involves its dissociation from I- κ B followed by translocation of the p50-p65 heterodimer to the nucleus, where it directly binds to its cognate DNA sequences. ^{7,8}

Both p50 and p65 are members of a larger NF-κB/Rel family of transcription factors, that in vertebrates includes at least five members: NFKB1 (p50 and its precursor, p105), NFKB2 (p52 and its precursor, p100), p65 (RelA), c-Rel (Rel), and RelB.9 The Rel homology region comprises ~300 amino acid residues and is responsible for DNA binding and dimerization. As dimers, all five proteins can form complexes with κB DNA sequence motifs, and all have been shown to affect transcription of κB reporter genes positively or negatively when assayed following transfection. ⁶ The high level of interest in Rel-based transcription factors is due to their broad role in inducing and coordinating the expression of genes of significant biomedical importance, such as those encoding inflammatory cytokines, chemokines, interferons, MHC proteins, growth factors, cell adhesion molecules, and viruses.

Sequence: Met-Asn-Glu-Leu-Phe -Pro-Leu-Ile-Phe-Pro-Ala-Glu-Pro-Ala-Glu-Ala-Ser-Gly-Pro-Tyr-Val

Molecular mass: 2,274.8 Da

NF-κB (p65) Control Peptide is supplied in a solution containing 0.01% sodium azide as a preservative.

The synthetic peptide is purified by HPLC.

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Due to the sodium azide content a material safety sheet (MSDS) for this product has been sent to the attention of the safety officer of your institution. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Storage/Stability

NF- κ B (p65) Control Peptide remains active for at least six months when stored at –20 °C. Avoid repeated freeze-thaw cycles. Should this product contain a precipitate, microcentrifugation before use is recommended.

References

- 1. Muller, C.W., and Harrison, S.C., FEBS Lett., **369**, 113 (1995).
- 2. May, M.J., and Ghosh, S., Immunol. Today, **19**, 80 (1998).
- 3. Sen, R., and Baltimore, D., Cell, 47, 921 (1986).
- 4. Grilli, M. et al., Int. Rev. Cytol., **143**, 1 (1991).
- 5. Grimm, S., and Baeuerle, P.A., Biochem. J., **290**, 297 (1993).
- 6. Sha, W.C. et al., Cell, 80, 321 (1995).
- 7. Baeuerle, P.A., and Baltimore, D., Cell, **87**, 13 (1996).
- 8. Thanos, D., and Maniatis, T., Cell, 80, 529 (1995).
- 9. Nolan, G.P., and Baltimore, D., Curr. Opin. Genet. Dev., **2**, 211 (1992).

ADM,SC,LMY,MAM 01/11-1