Product Information

Lectin from *Bandeiraea simplicifolia* (*Griffonia simplicifolia*)

FITC Conjugate

L9381

Storage Temperature: -20 °C

Product Description

Lectins are proteins or glycoproteins of non-immune origin that agglutinate cells and/or precipitate complex carbohydrates. Lectins are capable of binding glycoproteins even in presence of various detergents. The agglutination activity of these highly specific carbohydrate-binding molecules is usually inhibited by a simple monosaccharide, but for some lectins, di, tri, and even polysaccharides are required.

Lectins are isolated from a wide variety of natural sources, including seeds, plant roots and bark, fungi, bacteria, seaweed and sponges, mollusks, fish eggs, body fluids of invertebrates and lower vertebrates, and from mammalian cell membranes. The precise physiological role of lectins in nature is still unknown, but they have proved to be very valuable in a wide variety of applications in vitro, including:

- Blood grouping and erythrocyte poly-agglutination studies.
- Mitogenic stimulation of lymphocytes.
- Lymphocyte subpopulation studies.
- Fractionation of cells and other particles.
- Histochemical studies of normal and pathological conditions.

We offer a range of lectins suitable for the above applications. Most of our lectins are highly purified by affinity chromatography, but some are offered as purified or partially purified lectins, suitable for specific applications.

Many of the lectins are available conjugated to (conjugation does not alter the specificity of the lectin):

- Fluorochromes (for detection by fluorimetry).
- Enzymes (for enzyme-linked assays).
- Insoluble matrices (for use as affinity media).

Please refer to the table for general information on the most common lectins.

This product is conjugated to FITC, allowing detection in binding assays by fluorescence. It is a mixture of all possible isoforms of this lectin.

Precautions and Disclaimer

For Laboratory Use Only. Not for drug, household or other uses.

Preparation Instructions

The product is soluble in 0.9% sodium chloride solution (1 mg/mL), yielding a clear, yellow solution.

Storage/Stability

Aggregation is thought to occur in the presence of high concentrations of 2-mercaptoethanol.

ec		

Lectin	MW (kDa)	- Subunits	- F		_
			Blood Group	Sugar	Mitogenic Activity
Abrus precatorius			-		+
Agglutinin	134	4		gal	
Abrin A (toxin)	60	2		gal	
Abrin B (toxin)	63.8	2(αβ)		gal	
Agarius bisporus	58.5	-	-	β-gal(1→3)galNAc	
Anguilla anguilla	40	2	Н	a-L-Fuc	
Arachis hypogaea	120	4	Т	β-gal(1→3)galNAc	
Artocarpus integrifolia	42	4	Т	α-gal→OMe	+
Bandeiraea simplicifolia					
BS-I	114	4	А, В	α-gal, α-galNAc	
BS-I-A ₄	114	4	Α	a-galNAc	
BS-I-B ₄	114	4	В	a-gal	
BS-II	113	4	Acq, B, Tk, T	glcNAc	
Bauhinia purpurea	195	4	-	β-gal(1→3)galNAc	+
Caragana arborescens	60; 120ª	2/4	-	galNAc	
Cicer arietinum	44	2	-	fetuin	
Codium fragile	60	4	-	galNAc	
Concanavalin A	102	4	-	a-man, a-glc	+
Succinyl-Concanavalin A	51	2	-	a-man, a-glc	+b
Cytisus scoparius	-	-	-	galNAc, gal	
Datura stramonium	86	2(αβ)	-	(glcNAc) ₂	
Dolichos biflorus	140	4	A ₁	a-galNAc	
Erythrina corallodendron	60	2	-	β-gal(1→4)glcNAc	+
Erythrina cristagalli	56.8	2(αβ)	-	β-gal(1→4)glcNAc	
Euonymus europaeus	166	4(αβ)	В, Н	a-gal(1→3)gal	+
Galanthus nivalis	52	4	(h)	non-reduc. a-man	
Glycine max	110	4	-	galNAc	+c
Helix aspersa	79	-	Α	galNAc	
Helix pomatia	79	6	Α	galNAc	
Lathyrus odoratus	40-43	4(αβ)	-	a-man	+
Lens culinaris	49	2	-	a-man	+

Specificity

Lectin	MW (kDa)	Subunits	Specificity		_
			Blood Group	Sugar	Mitogenic Activity
Limulus polyphemus	400	18	-	NeuNAc	
Bacterial agglutinin	-	-	-	galNAc, glcNAc	
Lycopersicon esculentum	71	-	-	(glcNAc)₃	
Maackia amurensis	130	2(αβ)	Ο	sialic acid	+
Maclura pomifera	40-43	2(αβ)	-	α-gal, α-galNAc	
Momordica charantia	115-129	4(αβ)	-	gal, galNAc	
Naja mocambique mocambique	-	-	-	-	
Naja naja kaouthia	-	-	-	-	
Narcissus pseudonarcissus	26	2	(h)	α-D-man	
Perseau americana	-	-	-	-	
Phaseolus coccineus	112	4	-	-	
Phaseolus limensis	247(II)	8	Α	galNAc	+
	124(III)	4			
Phaseolus vulgaris					
PHA-E	128	4	-	Oligosaccharide	+
PHA-L	128	4	-	Oligosaccharide	+
PHA-P					
PHA-M					
Phytolacca americana	32	-	-	(glcNAc)₃	+
Pisum sativum	49	4(αβ)	-	a-man	+
Pseudomonas aeruginosa	13-13.7	-	-	gal	+c
Psophocarpus tetragonolobus	35	1	-	galNAc, gal	
Ptilota plumosa	65; 170	-	В	α-gal	
Ricinus communis					
Toxin, RCA ₆₀	60	2	-	galNAc, β-gal	
Toxin, RCA ₁₂₀	120	4	<u>-</u>	β-gal	
Sambucus nigra	140	4(αβ)	-	αNeuNAC(2→6)gal galNAc	+°
Solanum tuberosum	50; 100a	1, 2	-	(glcNAc)3	
Sophora japonica	133	4	А, В	β-galNAc	

Specificity

Lectin			opece.c,		
	MW (kDa)	Subunits	Blood Group	Sugar	Mitogenic Activity
Tetragonolobus purpureas	120(A)	4	Н	a-L-fuc	
	58(BA)	2	Н	a-L-fuc	
	117(C)	4	Н	a-L-fuc	
Triticum vulgaris	36	2	-	(glcNAc)2, NeuNAc	+
Ulex europaeus					
UEA I	68	-	Н	a-L-fuc	
UEA II	68	-	-	(glcNAc) ₂	
Vicia faba	50	4(αβ)	-	man, glc	+
Vicia sativa	40	4(αβ)	-	glc, man	+
Vicia villosa	139	4	$A_{1+}T_n$	galNAc	
A ₄	134	4	A_1	galNAc	
B ₄	143	4	T_n	galNAc	
Vigna radiata	160	4	-	α-gal	
Viscum album	115	4(αβ)	-	β-gal	
Wisteria floribunda	68	2	-	galNAc	

^a Concentration-dependent molecular weight

Reference

1. Reisfeld, R. A., et al., Isolation and Characterization of a Mitogen from Pokeweed (*Phytolacca americana*). Proc. Nat. Acad. Sci., **58(5)**, 2020-2027 (1967).

^b Non-agglutinating and mitogenic

^c Mitogenic for neuraminidase-treated lymphocytes

Notice

We provide information and advice to our customers on application technologies and regulatory matters to the best of our knowledge and ability, but without obligation or liability. Existing laws and regulations are to be observed in all cases by our customers. This also applies in respect to any rights of third parties. Our information and advice do not relieve our customers of their own responsibility for checking the suitability of our products for the envisaged purpose.

The information in this document is subject to change without notice and should not be construed as a commitment by the manufacturing or selling entity, or an affiliate. We assume no responsibility for any errors that may appear in this document.

Technical Assistance

Visit the tech service page at SigmaAldrich.com/techservice.

Terms and Conditions of Sale

Warranty, use restrictions, and other conditions of sale may be found at SigmaAldrich.com/terms.

Contact Information

For the location of the office nearest you, go to SigmaAldrich.com/offices.

The life science business of Merck operates as MilliporeSigma in the U.S. and Canada.

