

3050 Spruce Street
Saint Louis, Missouri 63103 USA
Telephone 800-325-5832 • (314) 771-5765
Fax (314) 286-7828
email: techserv@sial.com
sigma-aldrich.com

ProductInformation

N-ACETYL-ILE-GLU-PRO-ASP p-NITROANILIDE

Product Number A 6470 Storage Temperature –20 °C

(Ac-IEPD-pNA)

Product Description

Appearance: White Powder Formula Weight: 634.6 Molecular Formula C₂₈H₃₈N₆O₁₁

Purity: ≥97 % by HPLC.

Colormetric substrate for caspase 8 and granzyme B.

Preparation Instructions

Soluble in dimethyl sulfoxide (DMSO) to 20 mM.

Storage/Stability

Store tightly sealed and desiccated at –20 °C. Allow powder to reach room temperature before opening vial. May be stored desiccated in solid form at room temperature for one year. Store DMSO solutions at –20 °C for up to 6 months.

Procedure

Colormetric Enzyme Assay in 96-well ELISA Plate

- Buffer: 25 mM HEPES, pH 7.5, 0.1% CHAPS, 5 % (w/v) sucrose, 5 mM DTT, 2 mM EDTA. Use 17 Mohm deionized water.
- Substrate: 2 mM stock solution of Ac-IEPD-PNA in DMSO.
- Enzyme: Cell lysate or purified enzyme solution (~10 μg/ml enzyme).
- p-Nitroaniline Standard: 200 μM free p-nitroaniline (Product Number N 2128) in DMSO.
- 1. Place 10 μl of the diluted cell lysate or purified enzyme solution in a well.
- 2. Add the 90 µl of Buffer to the well.
- 3. Start the reaction with the addition of 10 μ l of the 2 mM substrate solution using a multichannel pipette.

- Place in the ELISA reader and read at 5 minute intervals at 405 nm for t minutes (where t can be from 20 to 60 minutes or even longer for very dilute samples).
- 5. Calculate the net OD increase by subtracting the value at zero time from the value at the time interval measured.
- Determine the amount of p-Nitroaniline (nmol) released during the reaction by comparing the net OD to the p-Nitroaniline (pNA) standard curve (see Table 1).

Table 1: p-Nitroaniline Standard Curve

nmol pNA per	pNA std 200 μM	Buffer
well	μl per well	μl per well
0	0	100
1	5	95
2	10	90
5	25	75
10	50	50
15	75	25
20	100	0

Calculation

Calculate the enzyme activity as nmol pNA released per min per ml for the enzyme sample.

V = volume in ml of enzyme solution in the reaction D = any dilution of original enzyme sample prior to addition to reaction.

t = reaction time in minutes

A_{nmol} = absorbance of 1 nmol in the microwell from the calibration curve

 A_t = absorbance at time t min. A_0 = absorbance at zero time

Activity, nmol/min/ml = $(A_t-A_0) \times D$ $(A_{t-t}) \times (t) \times V$

lpg 3/01