

3050 Spruce Street, St. Louis, MO 63103 USA
Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757
email: techservice@sial.com sigma-aldrich.com

Product Information

Monoclonal Anti-Heat Shock Protein 90 Clone AC-16

produced in mouse, ascites fluid

Catalog Number H1775

Synonym: Anti-HSP90

Product Description

Monoclonal Anti-Heat Shock Protein 90 (mouse IgG2b isotype) is derived from the AC-16 hybridoma produced by the fusion of mouse myeloma cells and splenocytes from B1OS mice immunized with heat shock protein 90 purified from the water mold *Achlya ambisexualis*. The isotype is determined using Mouse Monoclonal Antibody Isotyping Reagent, Catalog Number ISO2).

Monoclonal Anti-Heat Shock Protein 90 recognizes HSP90 (88 kDa) using immunoblotting. The antibody is reactive with both the constitutive and the inducible HSP90. However, it does not bind to the native form of HSP90. Cross-reactivity has been observed with human, rabbit, rat, mice, chicken, insect (*Sf9* cell line), water mold (*Achlya*) and wheat germ, but not with *E. coli* and yeast.

A wide variety of environmental perturbations, such as sudden increase in temperature, induce cells to rapidly synthesize a group of polypeptides known as the heat shock (stress) proteins. 1-4 These proteins are produced by prokaryotic and eukaryotic cells, and are among the most conserved molecules in phylogeny. The HSPs have been grouped into several families on the basis of their size and sequence homology: HSP100, HSP90, HSP70, HSP60, small HSPs and ubiquitin. Two forms of cytoplasmic HSP90, designated α and β in humans and HSP86 and HSP84 in mice, have been described and shown to have an 86% homology. A glucoseregulated protein, GRP94, constitutes the third closely related member of the HSP90 family; this protein differs from the other, primarily cytosolic members of the family by its location in the endoplasmic reticulum (ER) and Golgi. HSP90 is relatively abundant in unstressed cells of most, if not all, prokaryotic and eukaryotic systems. HSP90 can be strongly induced by heat shock in some systems.

It exists in a dimeric form and has been observed to bind to several other cellular proteins such as retrovirus kinases, steroid receptors, heme-regulated protein kinase, actin and tubulin. In this regard, HSP90 may function as a "molecular chaperone", as demonstrated in vitro.

Reagent

Supplied as ascites fluid with 15 mM sodium azide as a preservative.

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Storage/Stability

For continuous use, store at 2-8 °C for up to one month. For extended storage, the solution may be frozen in working aliquots. Repeated freezing and thawing, or storage in "frost-free" freezers, is not recommended. If slight turbidity occurs upon prolonged storage, clarify the solution by centrifugation before use.

Product Profile

<u>Immunoblotting</u>: a minimum working dilution of 1:1,000 is determined using cultured human foreskin fibroblasts.

Note: In order to obtain best results in different techniques and preparations, it is recommended that each individual user determine their optimum working dilution by titration assay.

References

- Lindquist, S., and Craig, E. A., *Annu. Rev. Genet.*, 22, 631 (1988).
- 2. Morimoto, R., et al., (eds), in: Stress Proteins in Biology and Medicine, Cold Spring Harbor Lab, Cold Spring Harbor, N.Y., 1 (1990).
- 3. Welch, W., in: Stress Proteins in Biology and Medicine, Morimoto, R., et al., (eds), Cold Spring Harbor Lab., Cold Spring Harbor, N.Y., 278 (1990).

4.	Welch, W., Sci. Am., 268, 34 (1993).	5.	Kochevar. D., et al, <i>Toxicol. Lett.</i> , 56 , 243 (1991).
			DS,KAA,PHC 08/12-1