

3050 Spruce Street, St. Louis, MO 63103 USA
Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757
email: techservice@sial.com sigma-aldrich.com

Product Information

Anti-β-Catenin

produced in rabbit, delipidized, whole antiserum

Catalog Number C2206

Product Description

Anti- β -Catenin is produced in rabbit using a synthetic peptide (Pro-Gly-Asp-Ser-Asn-Gln-Leu-Ala-Trp-Phe-Asp-Thr-Asp-Leu) conjugated to KLH as immunogen. The peptide corresponds to amino acids 768-781 of human or mouse β -catenin. The antiserum has been treated to remove lipoproteins.

The distinct peripheral cytosolic proteins, α -, β - and γ catenin (102 kDa, 94 kDa and 86 kDa respectively), are found in varying abundance in many developing and adult tissues. 1,2,3 The catenins bind, directly or indirectly, to the conserved cytoplasmic tail domain of the cell-adhesion cadherins. Cadherins are transmembrane cell surface glycoprotein molecules, concentrated at adherens junctions that mediate calcium-dependent intercellular interactions and are important for tissue morphogenesis.4 The linkage of the epithelial E- cadherin/uvomorulin to actin is essential for the cell binding function of this cadherin. Catenins also link E cadherin to other integral membrane proteins such as Na⁺/K⁺-ATPase, or to cytoplasmic proteins such as fodrin, ankyrin, Src and Yes kinases⁵ and are modulated by Wnt-1 protooncogene. 6,7 They are considered good candidates for mediating transduction of cell-cell contact positional signals to the cell interior. 4,5 Within its conserved regions α-catenin shows 30% identity to vinculin, a protein found mainly in focal cell-cell and cell substrate adhesions.^{2,3} Vinculin is known to interact with α-actinin, which in turn is associated with actin filaments in their site of attachment to the cell membrane focal contacts. The protein, α -catenin, is capable of interacting with N-cadherin and P-cadherin. Absence of α -catenin is found in certain tumor cell lines.⁸ Frequent reduction of α-catenin levels in human carcinomas of the esophagus, stomach and colon is reported⁹ Enhancement of tumor cell invasion and metastatic ability of such cells following catenins downregulation is speculated. Prostate cancer development appears to be correlated with α -catenin gene deletions.

Plakoglobin (probably identical to γ -catenin) and β-catenin are structural and possibly functional mammalian homologues of armadillo (arm), a Drosophila protein involved in signal transduction. The protein, β-catenin, binds directly to the cytoplasmic tail of E- cadherin. It binds to the amino terminus of α-catenin and also interacts with the cytosolic protein product of the human tumor suppressor gene APC.¹ Mutations in this gene occur early in colon carcinogenesis. Such mutations are linked to familial adenomatous polyposis and to progression of sporadic colorectal and gastric tumors. The preferential interaction of β -catenin with the APC protein involves a 15-amino acid repeat in the latter 11 and β -catenin cell levels seem to be controlled by APC. 12 The central core region of B-catenin is involved in mediation of the interaction of cadherin-catenin complex with the epidermal growth factor receptor. 13 The protein, β-catenin, is the target of two signal transduction pathways mediated by the protooncogenes Src and Wnt-1. $p120^{cas}$ which exhibits structural similarity to β catenin and plakoglobin may represent another catenin associated with cadherin. 14 Polyclonal antibodies against defined type-specific catenin peptides are useful tools for the study of these proteins. Such antibodies recognize the respective catenin type in a variety of immunological techniques such as immunoprecipitation, immunoblotting, immunofluorescence and immunoperoxidase in different cell types from various species.

Reagent

Supplied as a liquid containing 15 mM sodium azide as a preservative.

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Storage

For continuous use, store at 2-8 °C for up to one month. For extended storage, freeze in working aliquots. Repeated freezing and thawing, or storage in "frost-free" freezers, is not recommended. If slight turbidity occurs upon prolonged storage, clarify the solution by centrifugation before use.

Specificity

Anti- β -Catenin reacts in dot blot immunoassay with β -catenin peptide amino acids 768-781 conjugated to BSA. It reacts with a 94 kDa protein in extracts of Madin-Darby Bovine Kidney (MDBK) cultured cell line using immunoblotting. The antiserum shows no cross-reactivity with α -catenin peptide (amino acids 890-901) conjugated to BSA. The antibody stains β -catenin in frozen sections and cultured MDBK epithelial cells. Specific staining in immunoblotting is inhibited following preincubation of the diluted antiserum with the β -catenin peptide.

Product Profile

<u>Immunohistochemistry</u>: a minimum working dilution of 1:2,000 was determined using bovine kidney frozen sections.

<u>Indirect Immunofluorescence</u>: a minimum working dilution of 1:2,000 was determined using cultured MDBK cells.

<u>Immunoblotting</u>: a minimum working dilution of 1:4,000 was determined using cultured MDBK cells

Note: In order to obtain best results, it is recommended that each user determine the optimal working dilution for individual applications by titration assay.

Uses

Anti- β -Catenin may be used for the immunolocalization of β -catenin by immunohistology methods using frozen tissue sections and cultured cells. It may be used to detect β -catenin by other immunoassays including dot blot immunoassay and immunoblotting.

References

- Nagafuchi, A., and Takeichi, M., Cell Regul., 1, 37 (1989).
- 2. Ozawa, M., et al., *EMBO J.*, **8**, 1711 (1989).
- 3. Ozawa, M., et al., *Proc. Natl. Acad. Sci. USA*, **87**, 4246 (1990).
- 4. Cowin, P., *Proc. Natl. Acad. Sci. USA*, **91**, 11989 (1994).
- 5. Tsukita S., et al., *J. Cell Biol.*, **123**, 1049 (1993).
- 6. Bradley, R., et al., J. Cell Biol., 123, 1857 (1994).
- 7. Hinck, L., et al., J. Cell Biol., 124, 729 (1994).
- 8. Cowin, P., et al., Cell, 46, 1063 (1986).
- 9. Shiozaki, H., et al., Am. J. Pathol., 144, 667 (1994).
- 10. Schäfer, S., et al., Exp. Cell. Res., 211, 391 (1994).
- 11. Su, L., et al., Science, 262, 1734 (1993).
- 12. Mumemitsu, S., et al., *Proc. Natl. Acad. Sci USA*, **92**, 3046 (1995).
- 13. Hoschuetzky, H., et al., *J. Cell Biol.*, **127**, 1375 (1994).
- 14. Reynolds, A., et al., *Mol. Cell. Biol.* **14**, 8333 (1994).

DS,KAA,PHC 10-12-1