

3050 Spruce Street
Saint Louis, Missouri 63103 USA
Telephone 800-325-5832 • (314) 771-5765
Fax (314) 286-7828
email: techserv@sial.com
sigma-aldrich.com

ProductInformation

a-Synuclein A53T

human, recombinant, expressed in E.coli

Catalog Number **S 1071** Storage Temperature: –20 °C

Product Description

 $\alpha\textsc{-Synuclein}$, also known as the non-amyloid component of plaques precursor protein or NACP, is a 140-amino-acid protein (apparent molecular weight 19-20 kDa) encoded by a simple gene consisting of six exons on human chromosome 4. The physiological role of $\alpha\textsc{-synuclein}$ is not clear. In the search for its function it was found that $\alpha\textsc{-synuclein}$ induces polymerization of tubulin into microtubules. In addition, $\alpha\textsc{-synuclein}$ was found to function in the modulation of dopamine transporter function, regulating the synaptic tone of dopamine. Disruption of this function can ultimately lead to neurodegeneration of nerve terminals.

α-Synuclein is highly abundant in presynaptic terminals and is a major component of Lewy bodies (LBs). LBs are neuronal cytoplasmic inclusions that are found in diverse neurodegenerative disorders. The deposition of α-synuclein as fibrillary aggregates in neurons or glial cells is a hallmark lesion in a subset of neurodegenerative disorders. These disorders include Parkinson's disease (PD), dementia with Lewy bodies (filamentous inclusions), Lewy body variant of Alzheimer's disease, and multiple system atrophy.2 Pathogenic point mutations in the α -synuclein gene, like the Ala³⁰-Pro (A30P) and Ala⁵³- Thr (A53T) missense mutations, are linked to familial Parkinson's disease.⁵ However, most neurodegenerative disorders involving LBs are associated with abnormal accumulation of wild-type α-synuclein. Mice expressing A53T human α-synuclein, but not wild-type or the A30P variants, develop adult-onset neurodegenerative disease with aprogressive motoric dysfunction leading to death. 6 Deletion of the α-synuclein gene in mice results in functional deficits of the nigrostriatal dopamine system. Neuronal over-expression of wildtype human α -synuclein in mice resulted in progressive accumulation of α-synuclein in neurons, associated with loss of dopaminergic terminals in the basal ganglia and with motor impairment, suggesting that α -synuclein may play a role in Parkinson Disease and related conditions.8

Purity: ≥90% (SDS-PAGE)

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Storage/Stability

The product is shipped on dry ice and stored at -20°C. Reconstitute with water to ~1 mg/ml. Store the reconstituted solution in working aliquots at -20 °C. The reconstituted product is stable for at least 1 year.

References:

- Chen, X., et al., The human NACP/α-synuclein gene: chromosome assignment to 4q21.3-q22 and Taql RFLP analysis, *Genomics*, 26, 425-427 (1995).
- Alim, M.A., et al., Demonstration of a role for α-synuclein as a functional microtubule-associated protein. J. Alzheimers Dis., 6, 435-442 (2004).
- 3. Sidhu, A., et al., α-Synuclein regulation of the dopaminergic transporter: a possible role in the pathogenesis of Parkinson's disease. *FEBS Lett.*, **565**, 1-5 (2004).
- Iwai, A., et al., The precursor protein of non-A β component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system. Neuron, 14, 467-475 (1995).
- Polymeropoulos, M.H., et al., Mutation in the α-synuclein gene identified in families with Parkinson's disease. *Science*, **276**, 2045-2047 (1997).
- Lee, M.K., et al., Human α-synuclein-harboring familial Parkinson's disease-linked Ala-53- Thr mutation causes neurodegenerative disease with α-synuclein aggregation in transgenic mice. *Proc. Natl. Acad. Sci. USA*, **99**, 8968-8973 (2002).

7.	Abeliovich, A., et al., Mice lacking α -synuclein display functional deficits in the nigrostriatal dopamine system. <i>Neuron</i> , 25 , 239-251(2000).

8. Masliah, E., et al., Dopaminergic loss and inclusion body formation in α -synuclein mice: implications for neurodegenerative disorders. *Science*, **287**, 1265-1269 (2000).

EB,MCT,PHC 09/05-1