

3050 Spruce Street
Saint Louis, Missouri 63103 USA
Telephone 800-325-5832 • (314) 771-5765
Fax (314) 286-7828
email: techserv@sial.com
sigma-aldrich.com

ProductInformation

Monoclonal Anti-MAP Kinase, Non-Phosphorylated ERK Clone ERK-NP2 Purified Mouse Immunoglobulin

Product Number M 3807

Product Description

Monoclonal Anti-MAP Kinase, Non-Phosphorylated ERK (mouse IgG1 isotype) is derived from the ERK-NP2¹ hybridoma produced by the fusion of mouse myeloma cells and splenocytes from BALB/c mice immunized with a synthetic peptide sequences containing 11 amino acids HTGFLTEYVAT, corresponding to the non-phosphorylated form of ERK-activation loop, conjugated to KLH. The isotype is determined using Sigma ImmunoType Kit (Product Code ISO-1) and by a double diffusion immunoassay using Mouse Monoclonal Antibody Isotyping Reagents (Product Code ISO-2). The antibody is purified from culture supernatant of hybridoma cells, grown in a bioreactor.

Monoclonal Anti-MAP Kinase, Non-Phosphorylated ERK, reacts specifically with the non-phosphorylated, non-activated form of MAP kinase (ERK-1 and ERK-2, 44 kDa and 42 kDa, respectively). Weak cross-reaction is observed with monophosphorylated (threonine or tyrosine), but not with double-phosphorylated peptides of MAPK. The product does not recognize JNK- or p38-MAPK. The epitope recognized by the antibody contains non-phosphorylated threonine 183 and tyrosine which resides within the ERK-activation loop (e.g., amino acids 178-188 in ERK-2). The product may be used in immunoblotting (cultured cell extracts), ELISA, and immunocytochemistry. Reactivity has been observed with human and rat.

Signal transduction is the mechanism by which extracellular agents transmit their messages to intracellular target molecules. The propagation and amplification mechanisms of the primary signal involve many enzymes with specialized functions. These enzymes transmit the signals by several types of post-translational modifications, the most common being phosphorylation. Mitogen-activated protein kinase (MAPK) superfamily of enzymes is involved in wide-spread signaling pathways.¹⁻³ This family includes the ERK1/2 (extracellular signal-regulated protein kinase, also termed p42/p44 MAPK), JNK (c-Jun N-terminal protein kinase, also termed stress-activated protein kinase, SAPK1), and p38 MAPK (also termed SAPK2)

subfamilies, which comprise interwoven signal transduction molecules. These are the terminal enzymes in a three- or four-kinase cascade where each kinase phosphorylates and thereby activates the next member in the sequence. The terminology used for the different levels of the cascades is MAPK kinase (MAPKK) for the immediate upstream activators of the MAPK, MAPKK kinase (MAP3K), and MAP3K kinase (MAP4K) for the enzymes further upstream, respectively. Usually, the cascades are referred to by the name of the kinase in their MAPK level, although the p38 MAPK cascade is also known as the SPK cascade. Interestingly, the kinases in the MAPK level are activated by phosphorylation of both tyrosine (Y) and threonine (T) residues organized in a TXY motif. The residue in between the two phosphorylated residue determines the specificity of activation of the MAPKs, and is glutamic acid for ERK (TEY), proline for JNK and glycine for p38 MAPK. Phosphorylation of both tyrosine and threonine is essential for the full activation of all MAPKs. 4-7

It appears that this diverse family of protein kinases plays many different roles, and that the balance and interrelationships between the signals transmitted via the ERK, SPK and JNK cascades play important roles in the determination of signaling specificity in all eukaryotic cells. While certain stimuli are highly selective for a given cascade, other stimuli activate two or more cascades, resulting in a highly coordinated series of signaling events. However, whereas ERK generally transmits signals leading to cell proliferation, p38 MAPK and JNK are both mostly stress-responsive kinases⁴ and have been implicated in cell death in several cellular systems. Several kinases with similar functions in the MAPKK and MAP3K levels have been implicated in the ERK cascade. This cascade is initiated by the small Gprotein Ras, which upon stimulation causes membranal translocation and activation of the protein serine/threonine kinase, Raf1. Once activated, Raf1 continues the transmission of the signal by phosphorylating two regulatory serine residues located in the activation loop of MEK, thus, causing its full activation. Other kinases that can also activate MEK are A-Raf, B-Raf, Mos TPL2, and MEKK2, all of which seem

to phosphorylate the same regulatory residues of MEK. Activated MEK is a dual specificity protein kinase that appears to be the only kinase capable of specifically phosphorylating and activating ERK, the next kinase in this cascade.

ERK appears to be an important regulatory molecule, which by itself can phosphorylate regulatory targets in the cytosol (phospholipase A2, PLA2), translocated into and phosphorylate substrates in the nucleus (ELK1), or can transmit the signal to the MAPKAPK level. The main MAPKAPK of the ERK cascade is RSK, which can also translocate to the nucleus upon activation and phosphorylate a set of nuclear substrates different from those phosphorylated by ERK. Also, another MAPKAPK is MNK, which is activated by the SPK cascade. The inactivation of ERK may occur by removal of tyrosine, threonine or both residues by phosphatases. The process of ERK inactivation in the early stages of mitogenic stimulation involves separate threonine and tyrosine phosphatases, which may react differently in different cellular compartment and in different cell types. 1 Although the activation of the ERK cascade was initially implicated in the transmission and control of mitogenic signals, this cascade is now known to be important for differentiation, development, stress response, learning and memory, and morphology determination.

Antibodies that specifically recognize non-activated ERK, are important tools in the study of activation/inactivation processes of ERK.

Reagents

The product is supplied as a solution in 0.01 M phosphate buffered saline, pH 7.4, containing 15 mM sodium azide.

Antibody Concentration: approx. 2 mg/ml

Precautions and Disclaimer

Due to the sodium azide content a material safety sheet (MSDS) for this product has been sent to the attention of the safety officer of your institution. Consult the MSDS for information regarding hazards and safe handling practices.

Storage/Stability

For continuous use, store at 2-8 °C for up to one month. For extended storage, freeze in working aliquots. Repeated freezing and thawing is not recommended. Storage in "frost-free" freezers is not recommended. If slight turbidity occurs upon prolonged storage, clarify the solution by centrifugation before use. Working dilution samples should be discarded if not used within 12 hours.

Product Profile

A working concentration of 5-25 μ g/ml is determined by immunoblotting using rat brain extract.

Note: In order to obtain the best results in various techniques and preparations we recommend determining optimal working concentration by titration.

References

- 1. Yao, Z., et al., FEBS Lett., 468, 37 (2000).
- Seger, R., and Krebs, E.G., FASEB J., 9, 351 (1995).
- 3. Davis, R.J., J. Biol. Chem., 268, 14553 (1993).
- 4. Davis, R.J., Trends Biochem. Sci., 19, 470 (1994).
- 5. Han, J., et al., Science, 265, 808 (1994).
- 6. Lee, J.C., et al., Nature, **372**, 739 (1994).
- 7. Rouse, J., et al., Cell, 78, 1027 (1994).

kaa/lpg 09/02