

### SIGMA QUALITY CONTROL TES1

# **ProductInformation**

# Enzymatic Assay of GLUTAMIC-PYRUVIC TRANSAMINASE (EC 2.6.1.2)

#### PRINCIPLE:

L-Alanine + α-Ketoglutaric Acid GPT > Pyruvate + L-Glutamate

Pyruvate + β-NADH Lactic Acid Dehydrogenase > Lactate + β-NAD

Abbreviations used:

GPT = Glutamic-Pyruvic Transaminase

 $\beta$ -NADH =  $\beta$ -Nicotinamide Adenine Dinucleotide, Reduced Form

 $\beta$ -NAD =  $\beta$ -Nicotinamide Adenine Dinucleotide

**CONDITIONS:**  $T = 37^{\circ}C$ , pH = 7.4,  $A_{340nm}$ , Light path = 1 cm

**METHOD:** Continuous Spectrophotometric Rate Determination

#### **REAGENTS:**

- A. 100 mM Tris Buffer, pH 7.4 at 37°C.
   (Prepare 100 ml in deionized water using Trizma Base, Prod. No. T-1503. Adjust to pH 7.4 at 37°C with 1 M HCl.)
- B. 100 mM α-Ketoglutaric Acid Solution (α-KGA) (Prepare 10 ml in Reagent A using α-Ketoglutaric Acid, Monosodium Salt, Prod. No. K-1875.)
- C. 1 mM L-Alanine Solution (Prepare 10 ml in Reagent A using L-Alanine, Prod. No. A-7627.)
- D. 6.4 mM  $\beta$ -Nicotinamide Adenine Dinucleotide, Reduced Form Solution ( $\beta$ -NADH) (Dissolve the contents of one 10 mg vial of  $\beta$ -Nicotinamide Adenine Dinucleotide, Reduced Form, Disodium Salt, Preweighed Vial, Stock No. 340-110, in the appropriate volume of Reagent A.)

# Enzymatic Assay of GLUTAMIC-PYRUVIC TRANSAMINASE (EC 2.6.1.2)

### **REAGENTS:** (continued)

- E. Lactic Dehydrogenase Enzyme Solution (LDH) (Immediately before use, prepare a solution containing 400 - 600 units/ml in cold deionized water using Lactic Dehydrogenase, Prod. No. L-2500.)
- F. Glutamic-Pyruvic Transaminase Enzyme Solution (Immediately before use, prepare a solution containing 0.3 0.6 units/ml of Glutamic-Pyruvic Transaminase in cold deionized water.)

#### PROCEDURE:

Prepare a reaction cocktail by pipetting (in milliliters) the following reagents into a suitable container:

| Reagent A (Buffer)    | 18.5 |
|-----------------------|------|
| Reagent B (α-KGA)     | 3.0  |
| Reagent C (L-Alanine) | 6.0  |
| Reagent D (β-NADH)    | 0.5  |
| Reagent E (LDH)       | 1.0  |

Mix and adjust to pH 7.4 at 37°C with 1 M NaOH or 1 M HCl, if necessary.

Pipette (in milliliters) the following reagents into suitable cuvettes:

|                                                                                                                          | <u>Test</u> | <u>Blank</u> |
|--------------------------------------------------------------------------------------------------------------------------|-------------|--------------|
| Reaction Cocktail                                                                                                        | 2.90        | 2.90         |
| Equilibrate to 37°C. Monitor the $A_{340nm}$ until constant, using a suitably thermostatted spectrophotometer. Then add: |             |              |
| Deionized Water<br>Reagent F (Enzyme Solution)                                                                           | 0.10        | 0.10<br>     |

Immediately mix by inversion and record the decrease in  $A_{340nm}$  for approximately 5 minutes. Obtain the  $\Delta A_{340nm}$ /minute using the maximum linear rate for both the Test and Blank.

# Enzymatic Assay of GLUTAMIC-PYRUVIC TRANSAMINASE (EC 2.6.1.2)

### **CALCULATIONS:**

Units/mg enzyme = 
$$\frac{(\Delta A_{340nm}/min \text{ Test - } \Delta A_{340nm}/min \text{ Blank})(3)(df)}{(6.22)(0.1)}$$

$$3 = \text{Total volume (in milliliters) of assay } df = \text{Dilution factor} \\ 6.22 = \text{Millimolar extinction coefficient of NADH at 340nm}$$

$$Units/mg \text{ solid} = \frac{units/ml \text{ enzyme}}{mg \text{ solid/ml enzyme}}$$

$$Units/mg \text{ protein} = \frac{units/ml \text{ enzyme}}{mg \text{ protein/ml enzyme}}$$

#### **UNIT DEFINITION:**

One unit will convert 1.0  $\mu$ Mole of  $\alpha$ -ketoglutarate to L-glutamate per minute at pH 7.4 at 37°C, in the presence of L-alanine.

## **FINAL ASSAY CONCENTRATION:**

In a 3.00 ml reaction mix, the final concentrations are 93 mM Tris, 10 mM  $\alpha$ -ketoglutarate, 200 mM L-alanine, 0.11 mM  $\beta$ -NADH, 13 - 20 units lactic dehydrogenase and 0.03 - 0.06 units glutamic pyruvic transaminase.

#### NOTES:

- 1. Lactic Dehydrogenase Unit Definition: One unit will reduce 1.0 µmole of pyruvate to L-lactate per minute at pH 7.5 at 37°C.
- Where Sigma Product or Stock numbers are specified, equivalent reagents may be substituted.

Sigma warrants that the above procedure information is currently utilized at Sigma and that Sigma products conform to the information in Sigma publications. Purchaser must determine the suitability of the information and products for its particular use. Upon purchase of Sigma products, see reverse side of invoice or packing slip for additional terms and conditions of sale.