3050 Spruce Street, St. Louis, MO 63103 USA
Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757
email: techservice@sial.com sigma-aldrich.com

Product Information

JNK1, active, GST-tagged, mouse PRECISIO® Kinase recombinant, expressed in *Sf*9 cells

Catalog Number **J2455** Storage Temperature –70 °C

Synonyms: JNK, JNK1, PRKM8, SAPK1, JNK1A1, JNK21B1/2

Product Description

As a member of the MAP kinase family, JNK1 is known to play a role in the induction of apoptosis through various stimuli such as TNF α . JNK1 also influences cell migration via phosphorylation of paxillin. JNK1 is also a crucial mediator of obesity and insulin resistance, and serves as a potential target for therapeutics.

This recombinant product was expressed by baculovirus in *Sf*9 insect cells using an N-terminal GST-tag. The gene accession number is NM 016700. It is supplied in 50 mM Tris-HCl, pH 7.5, with 150 mM NaCl, 0.25 mM DTT, 0.1 mM EGTA, 0.1 mM EDTA, 0.1 mM PMSF, and 25% glycerol.

Molecular mass: ~70 kDa

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Storage/Stability

The product ships on dry ice and storage at -70 °C is recommended. After opening, aliquot into smaller quantities and store at -70 °C. Avoid repeated handling and multiple freeze/thaw cycles.

Figure 1.

SDS-PAGE Gel of Typical Lot:

≥70% (SDS-PAGE, densitometry)

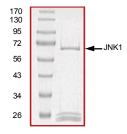
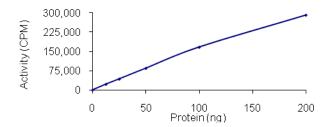



Figure 2.
Specific Activity of Typical Lot: 92–124 nmole/min/mg

Procedure

Preparation Instructions

Kinase Assay Buffer – 25 mM MOPS, pH 7.2, 12.5 mM glycerol 2-phosphate, 25 mM MgCl₂, 5 mM EGTA, and 2 mM EDTA. Just prior to use, add DTT to a final concentration of 0.25 mM.

Kinase Dilution Buffer – Dilute the Kinase Assay Buffer 5-fold with a 50 ng/µl BSA.

Kinase Solution – Dilute the active JNK1 ($0.1 \mu g/\mu l$) with Kinase Dilution Buffer to the desired concentration. Note: The specific activity plot may be used as a guideline (see Figure 2). It is recommended the researcher perform a serial dilution of active JNK1 kinase for optimal results.

10 mM ATP Stock Solution – Dissolve 55 mg of ATP in 10 ml of Kinase Assay Buffer. Store in 200 μ l aliquots at –20 °C.

 γ -³²P-ATP Assay Cocktail (250 μM) – Combine 5.75 ml of Kinase Assay Buffer, 150 μl of 10 mM ATP Stock Solution, 100 μl of γ -³²P-ATP (1 mCi/100 μl). Store in 1 ml aliquots at –20 °C.

Substrate Solution – Dissolve ATF2 in buffer (50 mM Tris-HCl, pH 7. 2, 50 mM NaC1₂, 5 mM EDTA and 0.25 mM DTT) at a final concentration of 0.5 mg/ml.

1% phosphoric acid solution – Dilute 10 ml of concentrated phosphoric acid to a final volume of 1 L with water.

Kinase Assay

This assay involves the use of the ³²P radioisotope. All institutional guidelines regarding the use of radioisotopes should be followed.

- 1. Thaw the active JNK1, Kinase Assay Buffer, Substrate Solution, and Kinase Dilution Buffer on ice. The γ -³²P-ATP Assay Cocktail may be thawed at room temperature.
- In a pre-cooled microcentrifuge tube, add the following solutions to a volume of 20 μl:

10 μl of Kinase Solution

10 ul of Substrate Solution

- 3. Set up a blank control as outlined in step 2, substituting 10 μ l of cold water (4 °C) for the Substrate Solution.
- Initiate each reaction with the addition of 5 μl of the γ-³²P-ATP Assay Cocktail, bringing the final reaction volume to 25 μl. Incubate the mixture in a water bath at 30 °C for 15 minutes.
- 5. After the 15 minute incubation, stop the reaction by spotting 20 μ l of the reaction mixture onto an individually precut strip of phosphocellulose P81 paper.

- Air dry the precut P81 strip and sequentially wash in the 1% phosphoric acid solution with constant gentle stirring. It is recommended the strips be washed a total of 3 times of ~10 minutes each.
- 7. Set up a radioactive control to measure the total γ - 32 P-ATP counts introduced into the reaction. Spot 5 μ l of the γ - 32 P-ATP Assay Cocktail on a precut P81 strip. Dry the sample for 2 minutes and read the counts. Do not wash this sample.
- 8. Count the radioactivity on the P81 paper in the presence of scintillation fluid in a scintillation counter.
- 9. Determine the corrected cpm by subtracting the blank control value (see step 3) from each sample and calculate the kinase specific activity

Calculations:

1. Specific Radioactivity (SR) of ATP (cpm/nmole)

SR =
$$\frac{\text{cpm of 5} \mu \text{l of } \gamma^{-32}\text{P-ATP Assay Cocktail}}{\text{nmole of ATP}}$$

cpm – value from control (step 7) nmole – 1.25 nmole (5 μl of 250 μM ATP Assav Cocktail)

2. Specific Kinase Activity (SA) (nmole/min/mg)

nmole/min/mg =
$$\Delta$$
cpm × (25/20)
SR × E × T

SR = specific radioactivity of the ATP (cpm/nmole ATP) Δ cpm = cpm of the sample – cpm of the blank (step 3) 25 = total reaction volume

20 = spot volume

T = reaction time (minutes)

E = amount of enzyme (mg)

References

- 1. Tournier, C. et al., Science, 288, 870-874 (2000).
- 2. Huang, C. et al., Nature, 424, 219-223 (2003).
- 3. Hirosumi, J. et al., Nature, 420, 333-336 (2002).

PRECISIO is a registered trademark of Sigma-Aldrich Co. LLC.

JB,MAM 01/14-1