3050 Spruce Street, St. Louis, MO 63103 USA
Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757
email: techservice@sial.com sigma-aldrich.com

Product Information

SYK, Active human, recombinant GST-tagged, expressed in *Sf*9 cells

Catalog Number **S6448**Lot Number 118K0521
Storage Temperature –70 °C

Product Description

SYK is a non-receptor protein tyrosine kinase that is widely expressed in hematopoietic cells. It is involved in coupling activated immunoreceptors to downstream signaling events that mediate diverse cellular responses, including proliferation, differentiation, and phagocytosis. In B cells, SYK plays a crucial role in intracellular signal transduction induced by oxidative stress as well as antigen receptor engagement. SYK has been shown to act as a potential tumor suppressor in breast cancer. Absence of the SYK protein in primary breast tumors is correlated with poor outcomes. SYK deficient cells exhibit increased motility. This is restored to normalcy by replacement with wild-type SYK.²

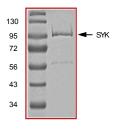
This recombinant product was expressed in *Sf*9 insect cells using an N-terminal GST-tag. The gene accession number is NM 003177. It is supplied in 50 mM Tris-HCl, pH 7.5, with 150 mM NaCl, 0.2 5mM DTT, 0.1 mM EGTA, 0.1 mM EDTA, 0.1 mM PMSF, and 25% glycerol.

Molecular mass: ~100 kDa

Purity: ≥70% (SDS-PAGE, see Figure 1)

Specific Activity: 79-107 nmole/min/mg (see Figure 2)

Precautions and Disclaimer


This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Storage/Stability

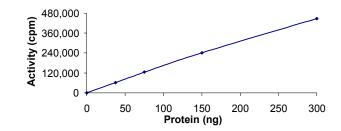

The product ships on dry ice and storage at -70 °C is recommended. After opening, aliquot into smaller quantities and store at -70 °C. Avoid repeated handling and multiple freeze/thaw cycles.

Figure 1.

SDS-PAGE Gel of Lot Number 118K0521: >90% (densitometry)

Figure 2.Specific Activity of Lot Number 118K0521: 90 nmole/min/mg

Procedure

Preparation Instructions

Kinase Assay Buffer – 25 mM MOPS, pH 7.2, 12.5 mM glycerol 2-phosphate, 20 mM MgCl₂, 12.5 mM MnCl₂, 5 mM EGTA, and 2 mM EDTA. Just prior to use, add DTT to a final concentration of 0.25 mM.

Kinase Dilution Buffer – Dilute the Kinase Assay Buffer 5-fold with a 50 ng/μl BSA solution.

Kinase Solution – Dilute the Active SYK (0.1 μ g/ μ l) with Kinase Dilution Buffer to the desired concentration. Note: The lot-specific specific activity plot may be used as a guideline (see Figure 2). It is recommended that the researcher perform a serial dilution of Active SYK kinase for optimal results.

10 mM ATP Stock Solution – Dissolve 55 mg of ATP in 10 ml of Kinase Assay Buffer. Store in 200 μ l aliquots at –20 °C.

 γ -³²P-ATP Assay Cocktail (250 μM) – Combine 5.75 ml of Kinase Assay Buffer, 150 μl of 10 mM ATP Stock Solution, 100 μl of γ -³²P-ATP (1 mCi/100 μl). Store in 1 ml aliquots at –20 °C.

Substrate Solution – Dissolve the synthetic peptide substrate (Poly Glu, Tyr - Glu:Tyr [4:1]) in water at a final concentration of 1 mg/ml.

1% phosphoric acid solution – Dilute 10 ml of concentrated phosphoric acid to a final volume of 1 L with water.

Kinase Assay

This assay involves the use of the ³²P radioisotope. All institutional guidelines regarding the use of radioisotopes should be followed.

- 1. Thaw the Active SYK, Kinase Assay Buffer, Substrate Solution, and Kinase Dilution Buffer on ice. The γ -³²P-ATP Assay Cocktail may be thawed at room temperature.
- 2. In a pre-cooled microcentrifuge tube, add the following solutions to a volume of 20 μl:

10 μl of Kinase Solution

10 ul of Substrate Solution

- 4. Initiate each reaction with the addition of 5 μ l of the γ - 32 P-ATP Assay Cocktail, bringing the final reaction volume to 25 μ l. Incubate the mixture in a water bath at 30 °C for 15 minutes.
- 5. After the 15 minute incubation, stop the reaction by spotting 20 μ l of the reaction mixture onto an individually precut strip of phosphocellulose P81 paper.

- Air dry the precut P81 strip and sequentially wash in the 1% phosphoric acid solution with constant gentle stirring. It is recommended the strips be washed a total of 3 times of ~10 minutes each.
- 7. Set up a radioactive control to measure the total γ - 32 P-ATP counts introduced into the reaction. Spot 5 μ l of the γ - 32 P-ATP Assay Cocktail on a precut P81 strip. Dry the sample for 2 minutes and read the counts. Do not wash this sample.
- 8. Count the radioactivity on the P81 paper in the presence of scintillation fluid in a scintillation counter.
- 9. Determine the corrected cpm by subtracting the blank control value (see step 3) from each sample and calculate the kinase specific activity

Calculations:

1. Specific Radioactivity (SR) of ATP (cpm/nmole)

SR = $\frac{\text{cpm of 5} \ \mu \text{l of } \gamma^{-32} \text{P-ATP Assay Cocktail}}{\text{nmole of ATP}}$ cpm – value from control (step 7)
nmole – 1.25 nmole (5 μ l of 250 μ M ATP Assay Cocktail)

2. Specific Kinase Activity (SA) (nmole/min/mg)

nmole/min/mg =
$$\Delta$$
cpm x (25/20)
SR x E x T

SR = specific radioactivity of the ATP (cpm/nmole ATP) ∆cpm = cpm of the sample – cpm of the blank (step 3) 25 = total reaction volume

20 = spot volume

T = reaction time (minutes)

E = amount of enzyme (mg)

References

- 1. Takano, T. et al., Role of protein-tyrosine kinase syk in oxidative stress signaling in B cells. Antioxid. Redox Signal., **4**, 533-541 (2002).
- 2. Navara, C.S., The spleen tyrosine kinase (Syk) in human disease, implications for design of tyrosine kinase inhibitor based therapy. Curr. Pharm. Des., **10**, 1739-1744 (2004).

BKR,MAM 12/08-1