

ProductInformation

SIGMA QUALITY CONTROL TEST PROCEDURE

Enzymatic Assay of PHOSPHATASE, ALKALINE¹ (EC 3.1.3.1) Diethanolamine Assay

PRINCIPLE:

p-Nitrophenyl Phosphate + H₂O Alkaline Phosphatase > p-Nitrophenol + P_i

Abbreviation used: P_i = Inorganic Phosphate

CONDITIONS: $T = 37^{\circ}C$, pH = 9.8, A_{405nm} , Light path = 1 cm

METHOD: Continuous Spectrophotometric Rate Determination

REAGENTS:

- A. 1.0 M Diethanolamine Buffer with 0.50 mM Magnesium Chloride, pH 9.8 at 37°C (Prepare 50 ml using Diethanolamine, Sigma Prod. No. D-8885, and Magnesium Chloride, Hexahydrate, Sigma Prod. No. M-0250. Dissolve the Magnesium Chloride complete in deionized water before adding the Diethanolamine. Adjust to pH 9.8 at 37°C with 5 M HCl. PREPARE FRESH.)
- B. 150 mM p-Nitrophenyl Phosphate Solution (PNPP) (Prepare 2 ml in deionized water using Sigma 104 Phosphatase Substrate, Sigma Stock No. 104-0. PREPARE FRESH.)
- C. Phosphatase, Alkaline Enzyme Solution (Immediately before use, prepare a solution containing 0.1 0.2 unit/ml of Alkaline Phosphatase in cold Reagent A.)

PROCEDURE:

Pipette (in milliliters) the following reagents into suitable cuvettes:

	<u>rest</u>	DIATIK
Reagent A (Buffer)	2.70	2.80
Reagent B (PNPP)	0.30	0.30

Toot

Diank

P6774 Page 1 of 3

Revised: 07/27/95

Enzymatic Assay of PHOSPHATASE, ALKALINE¹ (EC 3.1.3.1) Diethanolamine Assay

PROCEDURE: (continued)

Mix by inversion and equilibrate to 37° C. Monitor the A_{405nm} until constant, using a suitably thermostatted spectrophotometer. Then add:

	<u>Test</u>	<u>Blank</u>
Reagent C (Enzyme Solution)	0.10	

Immediately mix by inversion and record the increase in A_{405nm} for approximately 5 minutes. Obtain the ΔA_{405nm} /minute using the maximum linear rate for both the Test and Blank.

CALCULATIONS:

Units/ml enzyme =
$$\frac{(\Delta A_{405nm}/min \text{ Test - } \Delta A_{405nm}/min \text{ Blank})(3.1)(df)}{(18.5) (0.1)}$$
$$3.1 = \text{Volume (in milliliters) of assay}$$

3.1 = Volume (in milliliters) of assay

df = Dilution factor

18.5 = Millimolar extinction coefficient of p-Nitrophenol at 405 nm

0.1 = Volume (in milliliters) of enzyme used

Units/mg solid =
$$\frac{\text{units/ml enzyme}}{\text{mg solid/ml enzyme}}$$

UNIT DEFINITION:

One unit will hydrolyze 1.0 µmole of p-nitrophenyl phosphate per minute at pH 9.8 at 37°C.

FINAL ASSAY CONCENTRATIONS:

In a 3.10 ml reaction mix, the final concentrations are 903 mM diethanolamine, 0.45 mM magnesium chloride, 14 mM p-nitrophenyl phosphate and 0.01 - 0.02 unit alkaline phosphatase.

P6774 Page 2 of 3

Revised: 07/27/95

Enzymatic Assay of PHOSPHATASE, ALKALINE¹ (EC 3.1.3.1) Diethanolamine Assay

REFERENCES:

Walter, K. and Schütt, C. (1974) in *Methods of Enzymatic Analysis* (Bergmeyer, H.U. ed) 2nd ed., Volume II, pp 860-864, Academic Press, Inc., NY

NOTES:

- 1. This enzyme assay is not to be used to assay Phosphatase, Alkaline, in which the specific activity is cited only in glycine units.
- 2. This assay is based on the cited reference.
- 3. Where Sigma Product or Stock numbers are specified, equivalent reagents may be substituted.

Sigma warrants that the above procedure information is currently utilized at Sigma and that Sigma products conform to the information in Sigma publications. Purchaser must determine the suitability of the information and products for its particular use. Upon purchase of Sigma products, see reverse side of invoice or packing slip for additional terms and conditions of sale.

P6774 Page 3 of 3

Revised: 07/27/95