

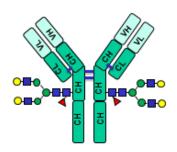
3050 Spruce Street, St. Louis, MO 63103 USA
Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757
email: techservice@sial.com sigma-aldrich.com

Product Information

SILu™Lite SigmaMAb Universal Monoclonal Antibody Standard, human recombinant, expressed in CHO cells

Catalog Number **MSQC4** Storage Temperature –20 °C

Product Description


SILu™Lite SigmaMAb is a recombinant human monoclonal antibody with a molecular mass of ~150 kDa expressed in CHO cells. It is designed for optimization of accurate intact mass analysis of monoclonal antibodies, biosimilars, and pharmaceutical products. Accurate intact mass analysis of such large biomolecules can provide comprehensive information about structural and post-translational modifications such as glycosylation. Other information such as heterogeneity, batch-to-batch variation, amino acid truncation, and N-terminal Lys processing, aggregation, and degradation can be determined. Intact mass analysis is also very important for formulation and storage in therapeutic monoclonal antibody drug development.

SigmaMAb is an IgG1 antibody with a lambda light chain. It consists of two identical heavy chains and two identical light chains. The heavy chains and light chains are linked by one disulfide bond. The heavy chains are linked by two disulfide bonds located in a hinge domain. The other 12 cysteine bonds are intramolecularly restricted to six different globular domains (Figure 2).

The antibody sequence has been evaluated by intact mass and peptide mapping using four different enzymes: chymotrypsin, Asp-N and Glu-C endoproteinases, and trypsin. Sequence coverage of 100% was obtained.

Structural Information

Sequence Information

 SigmaMAb Heavy Chain: EVQLVESGGGLVQPGGSLRLSCVASGFTLNNYD MHWVRQGIGKGLEWVSKIGTAGDRYYAGSVKGR FTISRENAKDSLYLQMNSLRVGDAAVYYCARGAG RWAPLGAFDIWGQGTMVTVSSASTKGPSVFPLA PSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGA LTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQ TYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCP APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVD VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNS TYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI EKTISKAKGQPREPQVYTLPPSRDELTKNQVSLT CLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS DGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH NHYTQKSLSLSPG

SigmaMAb Light Chain:
 QSALTQPRSVSGSPGQSVTISCTGTSSDIGGYNF
 VSWYQQHPGKAPKLMIYDATKRPSGVPDRFSGS
 KSGNTASLTISGLQAEDEADYYCCSYAGDYTPGV
 VFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANK
 ATLVCLISDFYPGAVTVAWKADSSPVKAGVETTT
 PSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVT
 HEGSTVEKTVAPTECS

Component

Each vial of SigmaMAb contains 1 mg of antibody lyophilized from a solution of phosphate buffered saline (PBS). Vial content is determined by measuring A_{280} and using an extinction coefficient ($E^{0.1\%}$) = 1.4.

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Safety Data Sheet for information regarding hazards and safe handling practices.

Preparation Instructions

SigmaMAb recovery is maximized when phosphate buffer, pH 6–7, is used to reconstitute the lyophilized product.

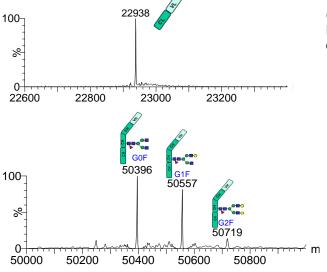
Note: Avoid PBS for reconstitution.

Reconstitute the contents of the vial by adding 500 μ L of ultrapure water or phosphate buffer, and mixing vigorously. The solubilized product can be further diluted as needed.

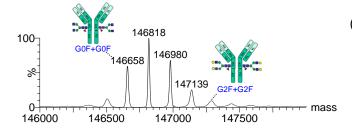
Storage/Stability

Store the lyophilized product at -20 °C.

Reference


 Beck, A., et al., Biosimilar, biobetter and next generation antibody characterization by mass spectrometry. Anal. Chem., 84(11), 4637-4646 (2012).

SILu is a trademark of Sigma-Aldrich Co. LLC.


JK,PRJ,KR,GCY,GA,MAM 01/18-1

Appendices

Figure 1. Mass spectra

- (a) Light Chain, calculated mass: 22,938 Da Partially reduced, with 2 intact intrachain disulfide bonds (–4 Da)
- (b) Heavy Chain, calculated mass: 50,395 Da Partially reduced, with 4 intact intrachain disulfide bonds (–8 Da)

(c) Intact SigmaMAb, calculated mass: 146,658 Da

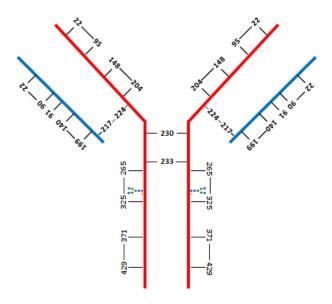

Deconvoluted mass spectra of (a) SigmaMAb light chain, (b) SigmaMAb heavy chain, and (c) intact SigmaMAb. The reduction was performed in non-denaturing conditions, where the inter-chain disulfide bonds (which are more susceptible to reduction) will break and produce the light chain and heavy chains, while the intra-chain disulfide bonds within each individual domain remain intact.

Table 1.The calculated molecular mass of light chains, heavy chains, and intact SigmaMAb with the most abundant glycoforms

Description	Composition	Modification	Average Mass (Da)*	Disulfide bond
Light chain, reduced	$C_{1006}H_{1555}N_{267}O_{333}S_7$	Pyroglutamic acid (Q)	22,942.2	2 intrachain
Heavy chain, reduced	$\begin{array}{c} C_{2181}H_{3393}N_{587}O_{663}S_{16} \\ C_{2237}H_{3485}N_{591}O_{702}S_{16} \\ C_{2243}H_{3495}N_{591}O_{707}S_{16} \\ C_{2249}H_{3505}N_{591}O_{712}S_{16} \end{array}$	- G0F G1F G2F	48,957.8 50,403.2 50,565.3 50,727.5	4 intrachain
Native, intact product, non-reduced	$\begin{array}{c} C_{6374}H_{9864}N_{1708}O_{1992}S_{46} \\ C_{6486}H_{10048}N_{1716}O_{2070}S_{46} \\ C_{6492}H_{10058}N_{1716}O_{2075}S_{46} \\ C_{6498}H_{10068}N_{1716}O_{2080}S_{46} \\ C_{6504}H_{10078}N_{1716}O_{2085}S_{46} \\ C_{6510}H_{10088}N_{1716}O_{2090}S_{46} \end{array}$	2 × Pyroglutamic acid (Q) G0F+G0F G0F+G1F G1F+G1F G1F+G2F G2F+G2F	143,767.7 146,658.4 146,820.6 146,982.7 147,144.8 147,307.0	16 (12 intrachain and 4 interchain)

G0F: GlcNAc₂Man₃GlcNAc₂Fuc G1F: GalGlcNAc₂Man₃GlcNAc₂Fuc G2F: Gal₂GlcNAc₂Man₃GlcNAc₂Fuc

Figure 2. Disulfide bonds of SILu™Lite SigmaMab

^{*} Masses based on NIST Physical Reference Data