

ProductInformation

SIGMA QUALITY CONTROL TEST PROCEDURE

Enzymatic Assay of 3-PHOSPHOGLYCERIC PHOSPHOKINASE (EC 2.7.2.3) from Baker's Yeast

PRINCIPLE:

GAP + β -NAD + P_i GAPDH > 1,3-Diphosphoglycerate + β -NADH

1,3-Diphosphoglycerate + ADP 3-PGK > 3-Phosphoglycerate + ATP

Abbreviations used:

GAP = Glyceraldehyde 3-Phosphate

 β -NAD = β -Nicotinamide Adenine Dinucleotide, Oxidized Form

 P_i = Inorganic Phosphate

GAPDH = Glyceraldehyde-3-Phosphate Dehydrogenase

 β -NADH = β -Nicotinamide Adenine Dinucleotide, Reduced Form

ADP = Adenosine 5'-Diphosphate

3-PGK = 3-Phosphoglyceric Phosphokinase

ATP = Adenosine 5'-Triphosphate

CONDITIONS: T = 25°C, pH 6.9, A_{340nm} , Light path = 1 cm

METHOD: Continuous Spectrophotometric Rate Determination

REAGENTS:

- A. 100 mM Potassium Phosphate Buffer, pH 6.9 at 25°C (Prepare 100 ml in deionized water using Potassium Phosphate, Monobasic, Anhydrous, Sigma Prod. No. P-5379. Adjust to pH 6.9 at 25°C with 1 M KOH.)
- B. 25 mM DL-Glyceraldehyde-3-Phosphate Solution (GAP)
 (Prepare 1 ml in deionized water using DL-Glyceraldehyde 3-Phosphate, Free Acid, Sigma Prod. No. G-5251.)
- C. 20 mM β -Nicotinamide Adenine Dinucleotide, Oxidized Form Solution (β -NAD) (Prepare 1 ml in deionized water using β -Nicotinamide Adenine Dinucleotide, Sigma prod. No. N-7004.)
- D. 10 mM Adenosine 5'-Diphosphate Solution (ADP)¹
 (Prepare 1 ml in deionized water using Adenosine 5'-Diphosphate, Sodium Salt, Sigma Prod. No. A-2754. Prepare Fresh.)

SPGLYC10
Revised: 08/01/97

Enzymatic Assay of 3-PHOSPHOGLYCERIC PHOSPHOKINASE (EC 2.7.2.3) from Baker's Yeast

REAGENTS: (continued)

- E. 50 mM Magnesium Sulfate Solution (MgSO₄)
 (Prepare 10 ml in deionized water using Magnesium Sulfate, Heptahydrate, Sigma Prod. No. M-1880.)
- F. 400 mM Glycine Solution (Glycine) (Prepare 25 ml in deionized water using Glycine, Free Base, Sigma Prod. No. G-7126.)
- G. Glyceraldehyde-3-Phosphate Dehydrogenase Solution (GAPDH)
 (Immediately before use, prepare a solution containing 20 units/ml of Glyceraldehyde 3-Phosphate Dehydrogenase, Sigma Prod. No. G-5537, in cold deionized water.)
- H. 3-Phosphoglyceric Phosphokinase Enzyme Solution (3-PGK)
 (Immediately before use, prepare a solution containing 0.3 0.6 unit/ml of 3-Phosphoglyceric Phosphokinase in cold Reagent A.)

PROCEDURE:

Pipette (in milliliters) the following reagents into suitable cuvettes:

	<u>Test</u>	<u>Blank</u>
Reagent A (Buffer)	1.40	1.40
Reagent B (GAP)	0.10	0.10
Reagent C (β-NAD)	0.05	0.05
Reagent D (ADP)	0.05	0.05
Reagent E (MgSO ₄)	0.25	0.25
Reagent F (Glycine)	1.00	1.00
Reagent G (GAPDH)	0.05	0.05

Mix by inversion and equilibrate to 25°C. Monitor the A_{340nm} until constant, using a suitably thermostatted spectrophotometer. Then add:

Reagent H (3-PGK)	0.10	
Reagent A (Buffer)		0.10

Immediately mix by inversion and record the increase in A_{340nm} for approximately 5 minutes. Obtain the ΔA_{340nm} /min using the maximum linear rate for both the Test and Blank.

SPGLYC10 Page 2 of 4

Revised: 08/01/97

Enzymatic Assay of 3-PHOSPHOGLYCERIC PHOSPHOKINASE (EC 2.7.2.3) from Baker's Yeast

CALCULATIONS:

Units/ml enzyme =
$$\frac{(\Delta A_{340nm}/min \text{ Test - } \Delta A_{340nm}/min \text{ Blank})(3)(df)}{(6.22)(0.1)}$$

3 = Total volume (in milliliters) of assay

df = Dilution factor

6.22 = Millimolar extinction coefficient of β -NADH at 340 nm

0.1 = Volume (in milliliter) of enzyme used

UNIT DEFINITION:

One unit will convert 1.0 µmole of 1,3-diphosphoglycerate to 3-phosphoglycerate per minute at pH 6.9 at 25°C.

FINAL ASSAY CONCENTRATIONS:

In a 3.00 ml reaction mix, the final concentrations are 50 mM potassium phosphate, 0.83 mM glyceraldehyde-3-phosphate, 0.3 mM β -nicotinamide adenine dinucleotide, 0.2 mM adenosine 5'-diphosphate, 4.2 mM magnesium sulfate, 133 mM glycine, 1 unit glyceraldehyde-3-phosphate dehydrogenase, and 0.03 - 0.06 unit 3-phosphoglyceric phosphokinase.

REFERENCE:

Bücher, T. (1955) Methods in Enzymology, Volume I, 415-422

NOTES:

- 1. Adenosine 5'-Diphosphate degrades to adenosine 5'-monophosphate which is an inhibitor of 3-phosphoglyceric phosphokinase. Therefore adenosine 5'-diphosphate solutions should be prepared directly before use.
- 2. This assay is based on the cited reference.

SPGLYC10 Revised: 08/01/97

Enzymatic Assay of 3-PHOSPHOGLYCERIC PHOSPHOKINASE (EC 2.7.2.3) from Baker's Yeast

NOTES: (continued)

- 3. Glyceraldehyde-3-Phosphate Dehydrogenase Unit Definition: One unit will reduce 1.0 µmole of 3-phosphoglycerate to D-glyceraldehyde-3-phosphate per minute in a coupled system with 3-phosphoglyceric phosphokinase at pH 7.6 at 25°C.
- 4. Where Sigma Product or Stock numbers are specified, equivalent reagents may be substituted.

Sigma warrants that the above procedure information is currently utilized at Sigma and that all Sigma-Aldrich, Inc. products conform to the information in this and other Sigma-Aldrich, Inc. publications. Purchaser must determine the suitability of the information and product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.

SPGLYC10 Page 4 of 4 Revised: 08/01/97