

SIGMA QUALITY CONTROL TEST PROCEDURE

ProductInformation

Enzymatic Assay of ACONITASE (EC 4.2.1.3)

PRINCIPLE:

Isocitrate + β-NADP $\frac{ICD}{}$ > α-Ketoglutarate + CO₂ + β-NADPH

Abbreviations:

 β -NADP = β -Nicotinamide Adenine Dinucleotide Phosphate, Oxidized Form β -NADPH = β -Nicotinamide Adenine Dinucleotide Phosphate, Reduced Form ICD = Isocitric Dehydrogenase

CONDITIONS: T = 25°C, pH = 7.4, A_{340nm} , Light path = 1 cm

METHOD: Continuous Spectrophotometric Rate Determination

REAGENTS:

- A. 100 mM Tris Buffer, pH 7.4 at 25°C
 (Prepare 100 mI in deionized water using Trizma Base, Sigma Prod. No. T-1503. Adjust to pH 7.4 at 25°C with 1 M HCl.)
- B. 2 mM Citric Acid Solution (Cit)
 (Prepare 20 ml in deionized water using Citric Acid Free Acid, Monohydrate, Sigma Prod. No. C-7129. Adjust to pH 7.4 with 100 mM NaOH.)
- C. 5.4 mM β-Nicotinamide Adenine Dinucleotide Phosphate Solution (β-NADP) (Dissolve the contents of a 5 mg vial of β-Nicotinamide Adenine Dinucleotide Phosphate, Sodium Salt, Sigma Stock No. 240-305, in the appropriate volume of deionized water or prepare 1 ml in deionized water using β-Nicotinamide Adenine Dinucleotide Phosphate, Sodium Salt, Sigma Prod. No. N-0505. PREPARE FRESH.)

SPCITR01
Revised: 08/16/95

Enzymatic Assay of ACONITASE (EC 4.2.1.3)

REAGENTS: (continued)

- D. 1 mM Ferrous Ammonium Sulfate Solution (Fe(NH₄)₂(SO₄)₂) (Prepare 1 ml in deionized water using Ferrous Ammonium Sulfate, Hexahydrate, Sigma Prod. No. F-3754. PREPARE FRESH.)
- E. 20 mM Manganese Sulfate (MnSO₄) (Prepare 2 ml in deionized water using Manganese Sulfate, Sigma Prod. No. M-7634.)
- F. 50 mM L-Cysteine Solution, pH 7.4 at 25°C (Cys) (Prepare 5 ml in deionized using L-Cysteine Hydrochloride, Sigma Prod. No. C-7880. Adjust to pH 7.4 at 25°C with 1 M NaOH. PREPARE FRESH.)
- G. **Activation Buffer** (Prepare by combining 4 ml of Reagent A, 0.10 ml of Reagent D, and 0.2 ml of Reagent F. Store at 0°C.)
- H. Isocitric Dehydrogenase Enzyme Solution (IsoDH) (Immediately before use, prepare a solution containing 14 units/ml in deionized water using Isocitric Dehydrogenase, Sigma Prod. No. I-2516.)
- I. Aconitase Enzyme (Use 15 mg.)

PROCEDURE:

Prepare activated Aconitase enzyme solution by combining the following reagents in a suitable vial:

Reagent I (Enzyme) Reagent G (Activation Buffer) 2.15 ml

Mix and incubate at 0°C for 1 hour.

Pipette (in milliliters) the following reagents into suitable cuvettes:

	<u>Test</u>	<u>Blank</u>
Deionized Water	1.45	1.45
Reagent A (Buffer)	1.00	1.00
Reagent B (Cit)	0.10	0.10
Reagent C (β-NADP)	0.10	0.10
Reagent E (MnSO ₄)	0.20	0.20
Reagent H (IsoDH)	0.05	0.05

Page 2 of 4 SPCITR01

Revised: 08/16/95

Enzymatic Assay of ACONITASE (EC 4.2.1.3)

PROCEDURE: (continued)

Mix by inversion and equilibrate at 25°C. Monitor the A_{340nm} until constant, using a suitably thermostatted spectrophotometer.

Then add:

	<u>Test</u>	<u>Blank</u>
Activated Aconitase Enzyme Solution	0.10	
Reagent G (Activation Buffer)		0.10

Immediately mix by inversion and record the increase in A_{340nm} for approximately 5 minutes. Obtain ΔA_{340nm} /minute using the maximum linear rate for both the Test and Blank.

CALCULATIONS:

Units/ml enzyme =
$$\frac{(\Delta A_{340nm}/min \ Test - \Delta A_{340nm}/min \ Blank)(3)(df)}{(6.22)(0.1)}$$

$$3 = Total \ volume \ (in \ milliliters) \ of \ assay \ df = Dilution \ factor \ 6.22 = Millimolar \ extinction \ coefficient \ of \ \beta-NADPH \ at \ 340 \ nm \ 0.1 = Volume \ (in \ milliliter) \ of \ enzyme \ used$$

$$Units/g \ solid = \frac{units/ml \ enzyme \ (1000)}{mg/ml \ enzyme}$$

$$Units/mg \ protein = \frac{units/ml \ enzyme}{mg \ protein/ml \ enzyme}$$

UNIT DEFINITION:

One unit will convert 1.0 μ mole of citrate (via cisÄaconitate) to isocitrate per minute at pH 7.4 at 25°C.

FINAL ASSAY CONCENTRATIONS:

In a 3.00 ml reaction mix, the final concentrations are 36 mM Tris, 0.07 mM citric acid, 0.18 mM β -nicotinamide adenine dinucleotide phosphate, 1.3 mM manganese sulfate, 0.0008 mM ferrous ammonium sulfate, 0.08 mM L-cysteine, 0.7 unit isocitric dehydrogenase, and 0.70 mg aconitase.

SPCITR01 Page 3 of 4 Revised: 08/16/95

Enzymatic Assay of ACONITASE (EC 4.2.1.3)

REFERENCE:

Morrison, J.F. (1954) Biochemical Journal 58, 685-692

NOTES:

- 1. This assay is based on the cited reference.
- Where Sigma Product or Stock numbers are specified, equivalent reagents may be substituted.

Sigma warrants that the above procedure information is currently utilized at Sigma and that Sigma products conform to the information in Sigma publications. Purchaser must determine the suitability of the information and products for its particular use. Upon purchase of Sigma products, see reverse side of invoice or packing slip for additional terms and conditions of sale.

SPCITR01 Page 4 of 4