

The 3D Petri Dish®

A New Cutting-Edge Culture Format

The 3D Petri Dish® grows cells in three dimensions and forms multi-cellular microtissues that more closely mimic tissues *in vivo*

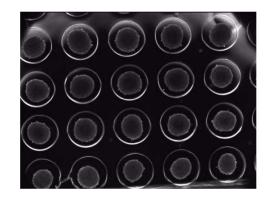
The 3D Petri Dish® is now available from Sigma-Aldrich®

The **3D Petri Dish**® is an easy-to-use 3D cell culture system that creates a natural 3D environment by maximizing cell-cell interactions. **Its scaffold-free**.

Autoclavable precision micro-molds for the creation of spheroids, neurospheres, hepatospheres, cardiospheres, embryoid bodies, and much more.

A growing list of over 40 different cell types (primary cells & cell lines) form 3D microtissues in the

3D Petri Dish®

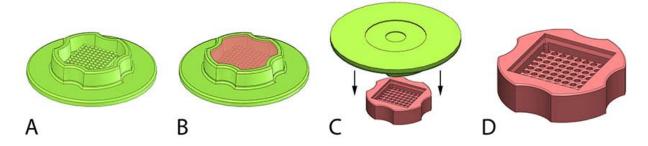


precision micro-molds

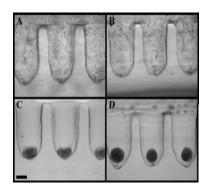
12 well format			
Z764000-6EA	12-256	256 small spheroids	
Z764019-6EA	12-81 81 large spheroids		
Z764094-6EA	12-1	spheroids, mixed pack	
Z764035-6EA	12-36TO	36 toroids	
Z764027-6EA	12-60TR	60 rods	

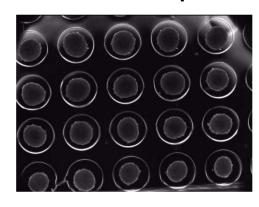
24 well format			
Z764043-6EA	24-96	96 small spheroids	
Z764051-6EA	24-35	35 large spheroids	
Z764108-6EA	24-1	spheroids, mixed pack	
Z764078-6EA	24-24TR	24 rods	
Z764086-6EA	24-H	1 honeycomb	

Tech pack		
Z764116-8EA	8-1	1 of each micro-mold, pk of 8

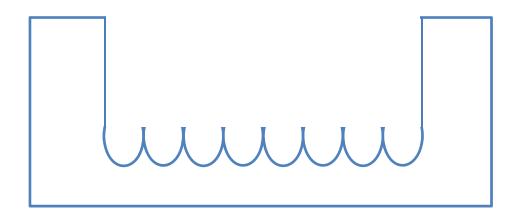


spheroids of human mesenchymal stem cells

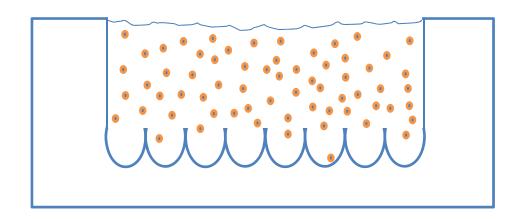



Micro-mold casting system

- A. Autoclave sterilize micro-mold
- B. Fill micro-mold with sterile molten agarose (2%)
- C. Separate gelled agarose from flexible micro-mold
- D. Place gel in multi-well plate and equilibrate with cell culture medium
- E. Seed with mono-dispersed cells
- F. Cells settle into micro-wells of agarose, aggregate and self-assemble spheroids

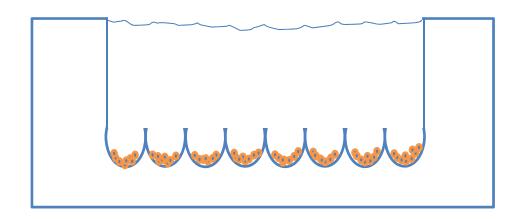


Remove gelled agarose from micro-mold Fill large chamber with mono-dispersed cells (190µl) Cells settle by gravity to bottoms of many micro-wells Cells aggregate and self-assemble many spheroids



Remove agarose from micro-mold

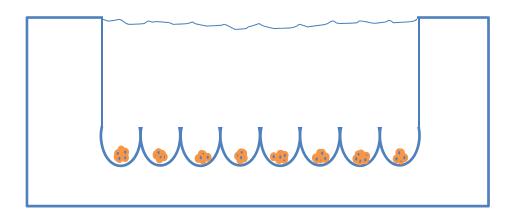
Fill large chamber with mono-dispersed cells (190µl)
Cells settle by gravity to bottoms of many micro-wells
Cells aggregate and self-assemble many spheroids



Remove agarose from micro-mold

Fill large chamber with mono-dispersed cells (190μl)

Cells settle by gravity to bottoms of many micro-wells Cells aggregate and self-assemble many spheroids


Remove agarose from micro-mold

Fill large chamber with mono-dispersed cells (190µl)

Cells settle by gravity to bottoms of many micro-wells

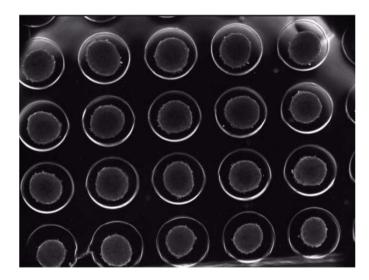
Cells aggregate and self-assemble many spheroids

The 3D Petri Dish® is scaffold-free

Multi-cellular spheroids form at the bottom of nonadhesive agarose micro-wells

Cells aggregate and self-assemble 3D spheroids

No scaffold, no added ECM, no attachment factors

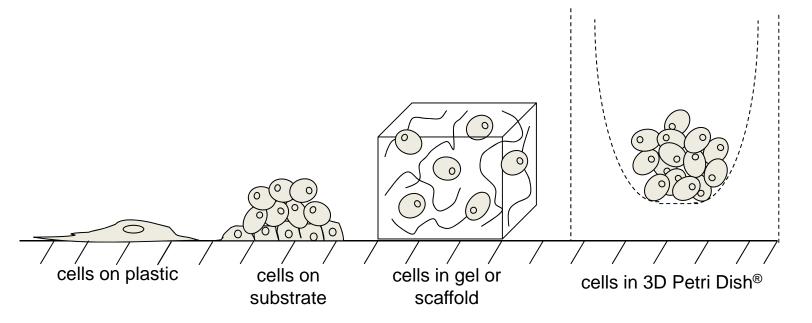

Cell-cell interactions and cell-cell communication are maximized

Cell density is akin to normal tissue

No lot-lot to variation

No-synthetic scaffold

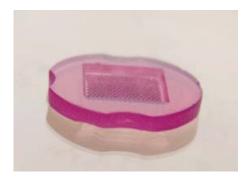
No artificially stiff substrate


spheroids of human mesenchymal stem cells

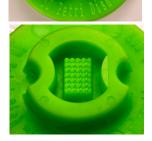
Culture spheroids in a stable uniform environment

- > won't dry out
- > won't spill out
- > won't fall from a drop
- > surrounded by culture medium on all sides
- > culture long term
- > replenish media, test drugs, add growth factors, sequential differentiation

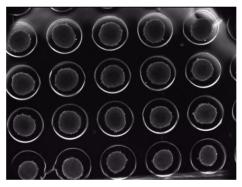




Make 100s of spheroids in a single pipeting step

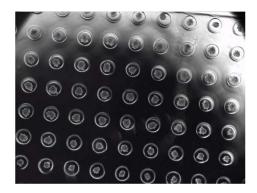


12 well format			
Z764000-6EA	12-256	256 small spheroids	
Z764019-6EA	12-81	81 large spheroids	


24 well format			
Z764043-6EA	24-96	96 small spheroids	
Z764051-6EA	24-35	35 large spheroids	

Control spheroid size by micro-mold choice

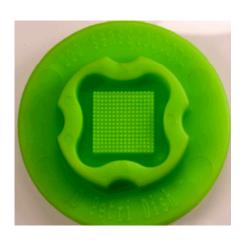
large spheroids of human mesenchymal stem cells


Z764019-6EA 12-81

81 large spheroids

micro-well diameter ~800µm

micro-well depth ~800μm

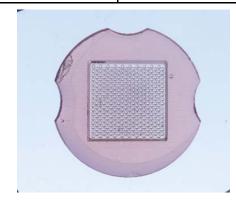

small spheroids of human mesenchymal stem cells

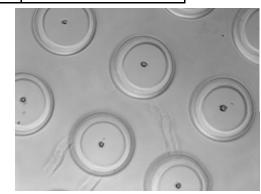
Z764000-6EA 12-256

256 small spheroids

micro-well diameter ~400µm

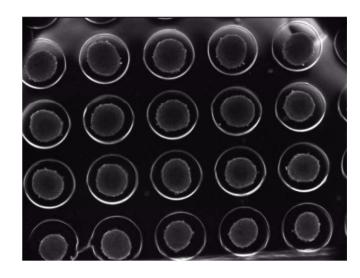
micro-well depth ~800µm

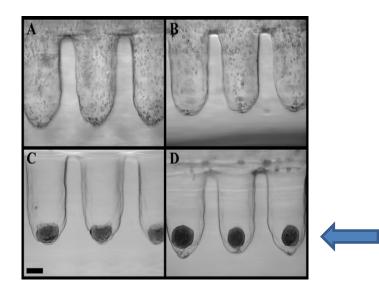




Control spheroid size by number of cells seeded

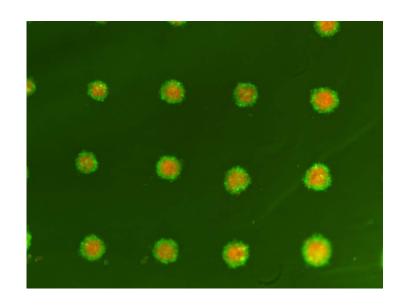
Cell seeding numbers for different sized spheroids.		# 12-256	# 24-96
		12 well plate Small spheroids: 256	24 well plate Small spheroids: 96
Spheroid diameter (µm)	~Cells/spheroid	Total cells seeded (cells/190 µl)	Total cells seeded (cells/75 µl)
50	15	3,840/190 µl	1,440/75 μl
100	125	32,000/190 µl	12,000/75 μl
150	421	107,000/190 μ1	40,000/75 μ1
200	1,000	256,000/190 µl	96,000/75 µl
250	1,953	500,000/190 μl	187,000/75 μ1



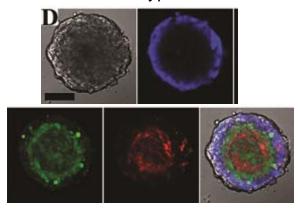


Form spheroids in an array on the same optical plane

array of spheroids of mesenchymal stem cells


same optical plane

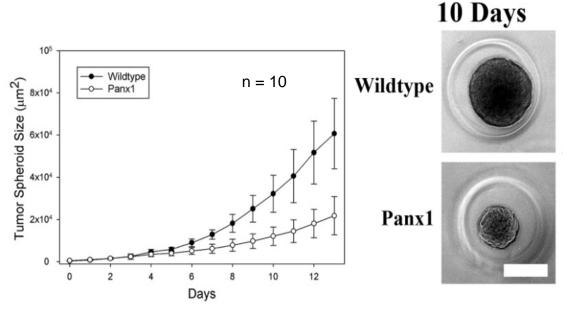
- > ordered, addressable array
- > image replicates
- > automation
- > time lapse, phase contrast, fluorescent microscopy


Form mixed spheroids with different cell types

1:1 mix, hepatocytes (green) fibroblasts (red)

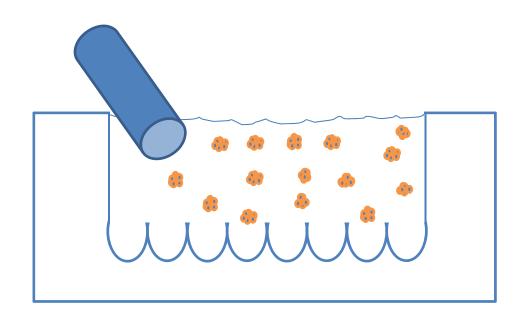
- > control ratio of cells
- > maximize heterotypic cell interactions
- > tumor cell-stromal cell interactions

3 cell types

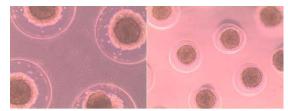


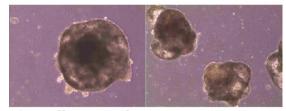
DIC microscopy; hepatocytes (blue) fibroblasts (green); HUVEC)(red); and their composite image

Culture spheroids long term in a stable environment Grow clonal spheroids from single cells


Seed ~1 cell/micro-well, quantify spheroid growth over 2 weeks

- > won't dry out, won't spill out, won't fall from a drop
- > surrounded by culture medium on all sides
- > replenish media, test drugs, add growth factors
- sequential differentiation
- > cancer stem cells




Harvest by flushing spheroids out of micro-wells with a pipette

embryoid bodies

81well-5K EB d1 256well-2K EB d1

81well-5K EB d5 256well-2K EB d5

Image courtesy of J Bruder Max Planck

- > no gel to dissolve, no enzymatic treatment
- > spheroids remain intact and unaltered
- > harvest spheroids for RT-PCR, Western blots, histology, immuno-staining
- > harvest spheroids for transplantation, for tumor implantation, for cell therapy

Form complex shapes for novel applications

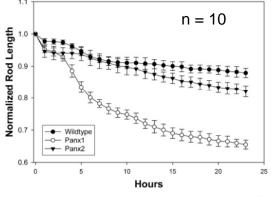


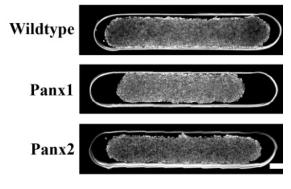
12 well format			
Z764035-6EA	12-36TO	36 toroids	
Z764027-6EA	12-60TR	60 rods	



24 well format			
Z764078-6EA	24-24TR	24 rods	
Z764086-6EA	24-H	1 honeycomb	




SIGMA-ALDRICH



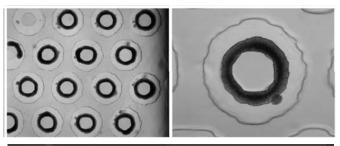
human fibroblasts seeded in troughs form multi-cellular rods that self assemble and contract over 12 hours

Troughs:

2,200 µm long

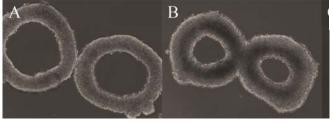
400 µm wide

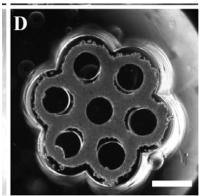
800 µm deep


round bottom trough

~ 25,000 cells/trough

- > quantify cell-cell adhesion
- > drug testing, genetic manipulations
- > cell-cell adhesion of cell mixtures




SIGMA-ALDRICH

toroid outer diameter 1.4 mm diameter of inner peg 600 μ m circular trough width 400 μ m circular trough depth 800 μ m

honeycomb size 3.4 mm diameter of pegs 600 μ m trough width 400 μ m trough depth 800 μ m

- > tissue engineering
- > cell migration

A growing list of cell types have been used in the 3D Petri Dish®

Primary cells

Human dermal fibroblasts

Rat cardiac myocytes

Rat cardiac fibroblasts

Human umbilical vein endothelial cells (HUVEC)

Calf pulmonary artery endothelial cells (CPAE)

Human theca cells

Murine neurons from the hippocampus

Human mesenchymal stem cells

Zebrafish ectoderm progenitor cells

Zebrafish mesoderm progenitor cells

Human mesenchymal stem cells

Embryoid bodies

Murine neural stem cells

Human chondrocytes

Bovine chondrocytes

Rat aortic smooth muscle cells

Cell lines

Murine fibroblasts (3T3)

Murine endothelial cells (bEnd3)

Rat endothelial cells (RBE4)

Human breast cancer cells (MCF-7)

Human breast cancer cells (T47D)

Human breast cancer cells (MDA-MB-231)

Human breast cancer cells (Hs-578T)

Human cervical cancer cells (HeLa)

Human epithelial carcinoma cells (A431)

Human hepatocytes (HepG2)

Rat hepatocytes (H35)

Human mesothelioma (M28)

Human mesothelioma (REN)

Human granulosa cells (KGN)

Human trophoblast cells (TCL)

Rat neuroblastoma cells (RG2)

Rat glioma cells (9L)

Rat glioma cells (C6)

Rat astrocytes (A7)

Murine neuroblastoma cells (B104)

Retinal pigment epithelial cells (ARPE-19)

Human embryonic kidney cells (HEK)

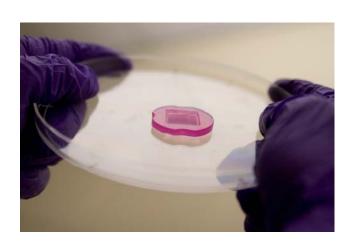
Rat endothelial cells (RBE4)

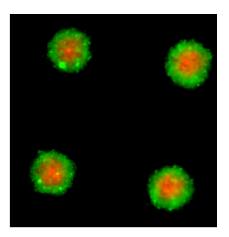
Murine endothelial cells (bEnd3)

Human non-small lung cancer cells (A549)

Human non-small lung cancer cell s (H1299)

➢ If your cells are adherent adhesive cells, they will self-assemble in the 3D Petri Dish®


The 3D Petri Dish® is now available from Sigma-Aldrich®


PRODUCT SUPPORT

Visit our website (www.microtissues.com)

Detailed protocols
FAQs
Published papers
List of cells
Tech support
Email your questions

