Skip to Content
Merck
  • Convenient QSAR model for predicting the complexation of structurally diverse compounds with beta-cyclodextrins.

Convenient QSAR model for predicting the complexation of structurally diverse compounds with beta-cyclodextrins.

Bioorganic & medicinal chemistry (2008-12-06)
Alfonso Pérez-Garrido, Aliuska Morales Helguera, Adela Abellán Guillén, M Natália D S Cordeiro, Amalio Garrido Escudero
ABSTRACT

This paper reports a QSAR study for predicting the complexation of a large and heterogeneous variety of substances (233 organic compounds) with beta-cyclodextrins (beta-CDs). Several different theoretical molecular descriptors, calculated solely from the molecular structure of the compounds under investigation, and an efficient variable selection procedure, like the Genetic Algorithm, led to models with satisfactory global accuracy and predictivity. But the best-final QSAR model is based on Topological descriptors meanwhile offering a reasonable interpretation. This QSAR model was able to explain ca. 84% of the variance in the experimental activity, and displayed very good internal cross-validation statistics and predictivity on external data. It shows that the driving forces for CD complexation are mainly hydrophobic and steric (van der Waals) interactions. Thus, the results of our study provide a valuable tool for future screening and priority testing of beta-CDs guest molecules.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Chloroform, biotech. grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
2-Methyl-1-propanol, ACS reagent, ≥99.0%
Sigma-Aldrich
1-Propanol, ≥99% (GC), purum
Sigma-Aldrich
Chloroform, contains ethanol as stabilizer, meets analytical specification of BP, 99-99.4% (GC)
Sigma-Aldrich
1-Octanol, ACS reagent, ≥99%
Sigma-Aldrich
2-Methoxyethanol, contains 50 ppm BHT as stabilizer, ACS reagent, ≥99.3%
Sigma-Aldrich
Chloroform, contains amylenes as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Acetone, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
2-Methyl-1-propanol, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99% (GC)
Sigma-Aldrich
1-Butanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Acetone, puriss., meets analytical specification of Ph. Eur., BP, NF, ≥99% (GC)
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Chloroform, ACS spectrophotometric grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
3-Methyl-1-butanol, ACS reagent, ≥98.5%
Sigma-Aldrich
1-Butanol, ACS reagent, ≥99.4%
Sigma-Aldrich
Chloroform, puriss. p.a., reag. ISO, reag. Ph. Eur., 99.0-99.4% (GC)
Sigma-Aldrich
1-Butanol, 99.9%
Sigma-Aldrich
Chloroform, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Chloroform, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
1-Propanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.8%
Sigma-Aldrich
1-Butanol, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetone, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
1-Octanol, suitable for HPLC, ≥99%
Sigma-Aldrich
2-Methoxyethanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Tetrahydrofuran, ACS reagent, ≥99.0%, contains 200-400 ppm BHT as inhibitor
Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%