- Crystallographic insights into sodium-channel modulation by the ฮฒ4 subunit.
Crystallographic insights into sodium-channel modulation by the ฮฒ4 subunit.
Voltage-gated sodium (Nav) channels are embedded in a multicomponent membrane signaling complex that plays a crucial role in cellular excitability. Although the mechanism remains unclear, ฮฒ-subunits modify Nav channel function and cause debilitating disorders when mutated. While investigating whether ฮฒ-subunits also influence ligand interactions, we found that ฮฒ4 dramatically alters toxin binding to Nav1.2. To explore these observations further, we solved the crystal structure of the extracellular ฮฒ4 domain and identified (58)Cys as an exposed residue that, when mutated, eliminates the influence of ฮฒ4 on toxin pharmacology. Moreover, our results suggest the presence of a docking site that is maintained by a cysteine bridge buried within the hydrophobic core of ฮฒ4. Disrupting this bridge by introducing a ฮฒ1 mutation implicated in epilepsy repositions the (58)Cys-containing loop and disrupts ฮฒ4 modulation of Nav1.2. Overall, the principles emerging from this work (i) help explain tissue-dependent variations in Nav channel pharmacology; (ii) enable the mechanistic interpretation of ฮฒ-subunit-related disorders; and (iii) provide insights in designing molecules capable of correcting aberrant ฮฒ-subunit behavior.