Skip to Content
Merck

725692

Sigma-Aldrich

Poly(ethylene glycol) dimethacrylate

average MN 20,000, cross-linking reagent polymerization reactions, methacrylate, ≤1, 500 ppm MEHQ as inhibitor (may contain)

Synonym(s):

Polyethylene glycol, PEG dimethacrylate

Sign Into View Organizational & Contract Pricing

Select a Size


About This Item

Linear Formula:
C3H5C(O)(OCH2CH2)nOC(O)C3H5
CAS Number:
MDL number:
UNSPSC Code:
12162002
NACRES:
NA.23
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Poly(ethylene glycol) dimethacrylate, average Mn 20,000, contains MEHQ as inhibitor

form

powder

mol wt

average Mn 20,000

contains

MEHQ as inhibitor
≤1,500 ppm MEHQ as inhibitor (may contain)

reaction suitability

reagent type: cross-linking reagent
reaction type: Polymerization Reactions

bp

>200 °C/2 mmHg (lit.)

transition temp

Tm 59-64 °C

Mw/Mn

≤1.1

Ω-end

methacrylate

α-end

methacrylate

polymer architecture

shape: linear
functionality: homobifunctional

storage temp.

−20°C

SMILES string

OCCO.CC(=C)C(O)=O

InChI

1S/C10H14O4/c1-7(2)9(11)13-5-6-14-10(12)8(3)4/h1,3,5-6H2,2,4H3

InChI key

STVZJERGLQHEKB-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Preparation Note

Synthesized with an initial concentration of ≤1,500 ppm MEHQ

Storage Class Code

11 - Combustible Solids

WGK

WGK 1


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Hailuo Fu et al.
Materials science & engineering. C, Materials for biological applications, 33(4), 2245-2250 (2013-03-19)
Implants that simultaneously function as an osteoconductive matrix and as a device for local drug or growth factor delivery could provide an attractive system for bone regeneration. In our previous work, we prepared hollow hydroxyapatite (abbreviated HA) microspheres with a
Sophia W Liao et al.
Biomaterials, 34(16), 3984-3991 (2013-03-08)
Islet transplantation offers a promising treatment for type 1 diabetes (T1D). However, a major hurdle in this treatment is the rapid loss of functional islets during culture and after transplantation. The liver site, currently utilized for transplantation, is suboptimal for
Pelagie M Favi et al.
Materials science & engineering. C, Materials for biological applications, 33(4), 1935-1944 (2013-03-19)
The culture of multipotent mesenchymal stem cells on natural biopolymers holds great promise for treatments of connective tissue disorders such as osteoarthritis. The safety and performance of such therapies relies on the systematic in vitro evaluation of the developed stem
C Aulin et al.
Laboratory animals, 47(1), 58-65 (2013-03-08)
Articular cartilage has a limited capacity for self-repair in adult humans, and methods used to stimulate regeneration often result in re-growth of fibrous cartilage, which has lower durability. No current treatment option can provide complete repair. The possibility of growth
Alyssa J Reiffel et al.
PloS one, 8(2), e56506-e56506 (2013-02-26)
Autologous techniques for the reconstruction of pediatric microtia often result in suboptimal aesthetic outcomes and morbidity at the costal cartilage donor site. We therefore sought to combine digital photogrammetry with CAD/CAM techniques to develop collagen type I hydrogel scaffolds and

Articles

조직 공학과 약물 전달과 같은 생명 공학의 진보는 다양한 기능성 바이오 소재에 대한 수요 증가를 동반합니다. 연구의 집중 관심 대상이 되어온 바이오 소재의 한 분야는 바로 하이드로겔으로, 화학적으로나 물리적으로 세포의 자연 환경과 유사하게 닮아 있기 때문에 세포를 키우는 토대로 사용될 수 있습니다. 본 기술 문서에서는 일반적으로 면역 반응을 유발하지 못하기 때문에 생물학적 용도로 적합한 PEG(폴리에틸렌 글리콜) 하이드로겔에 대해 상세하게 논의합니다. PEG는 쉽게 이용할 수 있으며, 손쉽게 고분자를 수정하여 세포 배양을 위한 2D 및 3D 뼈대를 포함한 하이드로겔 구성에 광범위하게 사용할 수 있습니다. 또한 분해성 결합을 통해 치료제 출시를 위한 다양한 응용분야에도 도움을 줍니다.

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Hydrogel-based biomaterials for cell delivery and tissue regeneration applications are discussed.

Scaffold patterning with poly(ethylene glycol)-based hydrogels for cell presence in 2D and 3D environments on photoactive substrates.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service